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Abstract
We present an alternative derivation of the LTI system underlying

the Legendre Delay Network (LDN). To this end, we first construct an
LTI system that generates the Legendre polynomials. We then dampen
the system by approximating a windowed impulse response, using what
we call a “delay re-encoder”. The resulting LTI system is equivalent to
the LDN system. This technique can be applied to arbitrary polynomial
bases, although there typically is no closed-form equation that describes
the state-transition matrix.

1 Introduction
The Delay Network, originally proposed by Voelker and Eliasmith (2018), is a
recurrent neural network capable of delaying an input signal u(t) by θ seconds.
Voelker (2019) points out that the impulse response of the linear time-invariant
(LTI) system underlying the delay network traces out the shifted Legendre
polynomials. We hence refer to this network as the Legendre Delay Network
(LDN), and to the LTI system underlying the LDN as the LDN system.

The LDN has been derived from the Padé approximants of a Laplace domain
delay e−θs and a subsequent conditioning coordinate transformation. From this
perspective, the relationship to the Legendre polynomials is rather surprising.

Gu, Dao, Ermon, Rudra, and Re (2020) have proposed LTI systems similar
to the LDN system for other polynomial bases and various window functions.
These systems are derived in the opposite direction of Voelker’s original approach.
Given a polynomial basis and a window function, Gu et al. derive an LTI system
that realizes this basis with the desired weighting applied.

In this report, we use a similar approach. Although the method presented
here has been developed independently, our approach differs from Gu et al. mostly
in terms of presentation. Our goal is to provide a simple derivation assuming a
minimal mathematical background; readers are encouraged to consult Gu et al.
for a more general treatment of the topic.
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2 Deriving the LDN system

We derive the LDN system Â, B̂ in two steps. First, we construct an LTI system
Ā, B̄ that traces out the Legendre polynomials as its impulse response over
the interval [0, θ]. Second, we derive a matrix Γ̄ that decodes a delayed signal
u(t− θ) from the state vector m(t) and re-encodes this delayed function in terms
of the Legendre basis. We call this matrix Γ̄ “delay re-encoder”. Subtracting
Γ̄ from Ā results in a dampened impulse response; the LDN system is simply
given as Â = Ā− Γ̄ and B̂ = B̄.

2.1 The LDN System
Before we discuss an alternative derivation of the LDN system Â, B̂, we should
first define this system itself. Note that we discuss a scaled version of the original
LDN system. The impulse response of the scaled system matches the shifted
Legendre polynomials for q →∞ (see Section 2.4).

More precisely, compared to the original system, we divide each state dimen-
sion i ∈ {1, . . . , q} by 2i+ 1. This can be easily accomplished by constructing a
diagonal matrix M of scaling factors and using this M as a coordinate transfor-
mation. In other words, it holds Â = MÂ′M−1 and B̂ = MB̂′, where Â′, B̂′ is
the original LDN system (cf. Voelker, 2019, Section 6.3.1, pp. 133-135).

Definition 1 (LDN System). Let m ∈ Rq, Â ∈ Rq×q and B̂ ∈ Rq×1. The
scaled LDN system is given as

d

dt
θm(t) = Âm(t) + B̂u(t)

(
Â
)
ij
= (2j − 1)

{
−1 if i ≤ j or i+ j is even ,
1 if i > j and i+ j is odd ,(

B̂
)
i
= (−1)i+1 .

(1)

The window-length θ determines how fast the system evolves.

This equation is
implemented in
the function
mk_ldn_lti .

Notation: Due to an unfortunate shortage of letters in the Latin alphabet, we
resort to a somewhat confusing, but hopefully consistent notation. In particular, we
use the following symbols to denote linear time-invariant (LTI) system matrices:

Symbols Description

A, B General LTI system with feedback matrix A and input matrix B

Â, B̂ The scaled Legendre Delay Network (LDN) system
Â′, B̂′ The original LDN system proposed by Voelker (2019)

Ā, B̄, Γ̄ The Legendre system and the corresponding delay re-encoder

Source code: We provide Python code for many of the equations in this report
(see margin notes). This code can be found here:

https://github.com/astoeckel/dlop_ldn_function_bases
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Example 1. The LDN system for θ = 1 and q = 6 is given as

Â =


-1 -3 -5 -7 -9 -11
1 -3 -5 -7 -9 -11
-1 3 -5 -7 -9 -11
1 -3 5 -7 -9 -11
-1 3 -5 7 -9 -11
1 -3 5 -7 9 -11

 , B̂ =


1
-1
1
-1
1
-1

 .

The impulse response of this system is depicted in Figure 1B.

For finite q, the impulse response approximates the Legendre polynomials.
In contrast to the Legendre polynomials, the impulse response quickly converges
to zero. In other words, the impulse response can be thought of as a “dampened”
version of the Legendre polynomials. This almost finite impulse response1 is
the most practically useful property of the LDN system. Feeding an input
signal u(t) into the LDN system can be thought of as performing an online basis
transformation. That is, the state m(t) approximately represents a window of the
input signal u[t−θ,t] in terms of a linear combination of the Legendre polynomials;
we discuss this in more detail below. In general, such transformations are known
as “sliding transformations”.

2.2 The Legendre System
Instead of approximating the Legendre polynomials, we can construct an LTI
system Ā, B̄ that perfectly traces out the Legendre polynomials as its impulse
response. In other words, the system “generates” the Legendre polynomials. As
we will see in the next subsection, we can then subtract a dampening term Γ
from this “Legendre system” to obtain the LDN.

Lemma 1. The impulse response of the linear time-invariant system d
dtθm(t) =

Ām(t) + B̄u(t) with m ∈ Rq, Ā ∈ Rq×q and B̄ ∈ Rq×1(
Ā
)
ij
= (4j − 2)

{
0 if i ≤ j or i+ j is even ,
4j − 2 if i > j and i+ j is odd ,

(
B̄
)
i
= (−1)i+1 , (2)

are the first q shifted Legendre polynomials P̃n(tθ−1) over t ∈ [0, θ].

This equation is
implemented in
the function
mk_leg_lti .

Example 2. The LTI system constructing the first six shifted Legendre polyno-
mials as its impulse response for θ = 1 is given as

Ā =


0 0 0 0 0 0
2 0 0 0 0 0
0 6 0 0 0 0
2 0 10 0 0 0
0 6 0 14 0 0
2 0 10 0 18 0

 , B̄ =


1
-1
1
-1
1
-1

 .

1We refer to the impulse response as “almost finite”, because it decays exponentially for
t > θ. Hence, technically, the system does not have a finite impulse response. However, this is
negligible for all practical purposes.
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Figure 1: Impulse responses fn(t) of the Legendre and LDN LTI systems for
θ = 1 of order q = 6. Dashed grey lines correspond to the first six shifted
Legendre polynomials P̃n(t). (A) Impulse response of the Legendre system. The
impulse response perfectly traces out the Legendre polynomials. The system
diverges for t → ∞. (B) Impulse response of the LDN system. The system
quickly converges to zero for t→∞.

The impulse response of this system is depicted in Figure 1A.

Proof of Lemma 1. As pointed out by Gu et al. (2020, Appendix B.1.1), and
originally described in Arfken and Weber (2005, Chapter 12.2, p. 751), Legendre
polynomials fulfil the following recurrence relation with respect to their derivative:

d

dt

(
Pn+1(t)− Pn−1(t)

)
= (2n+ 1)Pn(t) .

Substituting in P̃n(tθ−1) = Pn((2t− 1)θ−1) and rearranging we get

d

dt
θP̃n+1(tθ

−1) = (4n+ 2)P̃n(tθ
−1) +

d

dx
P̃n−1(tθ

−1)

= (4n+ 2)P̃n(tθ
−1) + (4(n− 2) + 2)P̃n−2(tθ

−1) + . . . .

This recurrence relation terminates with P̃0 or P̃1 depending on whether n is
even or odd. Crucially, this recurrence relation implies that the differential of
the nth Legendre polynomial can be expressed as a linear combination of the
preceding Legendre polynomials. Let m(t) = (P̃0(tθ

−1), . . . , P̃q−1(tθ
−1)). We

can now write the above equation as a vector-matrix product

d

dt
θm(t) = Ām(t) ,

where Ā is as defined in eq. (2). The vector B̄ =
(
P̃0(0), . . . , P̃q−1(0)

)
defines the

initial value of each state dimension in response to a Dirac pulse u(t) = δ(t).
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Sliding transformations Feeding a signal u(t) into the Legendre system
convolves this signal with the Legendre polynomials. The state vector m(t) =
(m0(t), . . . ,mq−1(t)) is the convolution between the impulse response exp(Āt)B̄ =

P̃n(tθ
−1) and the input signal u(t):

mn(t) =

∫ t

0

(
exp(Āτ)B̄

)
n+1

u(t− τ) dτ =

∫ t

0

P̃n(τθ
−1)u(t− τ) dτ . (3)

At t = θ a segment of the input u[0,θ] is stored in m(θ) as a linear combination of
the basis functions P̃n. At this point, the convolution operator is mathematically
equivalent to the inner product between the Legendre polynomials and the input
u(t) up to t = θ, i.e., mn(θ) = 〈u[0,θ], P̃n〉. However, for t > θ, the Legendre
polynomials Pn(tθ−1) and our impulse response quickly diverge.

If we were able to limit the impulse response to a window [0, θ] (i.e., t > θ ⇒
exp(Aτ)B = 0), then the state vector m(t) would always represent a slice of the
most recent input history window u[t−θ,t]. This suggests a convenient technique
for implementing a “sliding transformation”. Advancing the LTI system computes
the spectral coefficients m(t) describing a recent input slice. Using more general
notation, we would optimally like to implement a windowed convolution

mn(t) =

∫ θ

0

fn(τ)u(t− τ) dτ = 〈fn, u[t−θ,t]〉 , (4)

where the fn are the desired basis functions over [0, θ] generated by the LTI
system A, B, i.e., fn(t) = (exp(At)B)n+1 for n ∈ {0, . . . , q − 1}.

2.3 Dampening Through Information Erasure
To enforce a finite impulse response—to dampen the system—we somehow need
to prevent the impulse response from evolving past θ. We first discuss how to
accomplish this under the assumption that we have access to a perfect delay—i.e.,
we have a recording of the input signal over the past θ seconds. In a second step
we approximate a perfect delay by decoding a delayed version of the input signal
from the system state m(t) itself.

Constructing a rectangle window using a perfect delay If we have
access to a perfect delay line of length θ, we can easily construct a system with a
finite impulse response. All we need to do this, is to subtract the delayed u(t− θ)
from the system state m(t) using an “encoding vector” e(θ). Put differently, we
erase information about u(t) older than θ seconds from the system state. We
hence refer to this method as “information erasure”.

Lemma 2. Let A, B describe an LTI system and let u(t) be some input signal.
The impulse response of the following modified system is unchanged compared to
the original LTI system for 0 ≤ t < θ but zero for all t ≥ θ

d

dt
m(t) = Am(t) + Bu(t)− e(θ)u(t− θ) , where e(θ) = exp(Aθ)B . (5)
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Proof of Lemma 2. Consider the impulse response, i.e., u(t) = δ(t), where δ(t)
is a Dirac pulse. The system state is unchanged for t < θ as δ(t − θ) = 0 for
all t 6= θ; hence the impulse response of the system is m(t) = exp(At)B for
0 ≤ t < θ. At t = θ, according to the definition of the Dirac pulse, we subtract
e(θ) = exp(Aθ)B from the system state m(θ), exactly when m(θ) is equal to
e(θ). The resulting m is zero and remains zero as u(t) = δ(t) = 0 for t 6= 0.

Approximating a delayed input signal In practice, we may not have access
to the delayed input signal u(t − θ). However, remember that our goal is to
construct a system such that the system state m(t) represents a slice of u over
the interval [t− θ, t]. This representation is in terms of a linear combination of
the q polynomial basis functions. We can thus decode an approximate u(t− θ′)
from the state m(t) using a delay decoder d(θ′).

Definition 2 (Delay decoder). Let û : [0, θ] −→ R be a linear combination of q
basis functions fn : [0, θ] −→ R with weighting coefficients ξn. Let furthermore
m(t) = (m0(t), . . . ,mq−1(t)) denote the state of a q-dimensional linear dynamical
system with impulse responses fn and input û (cf. eq. 4), i.e.,

mn(t) =

∫ t

0

fn(τ)û(t− τ) dτ =

∫ t

0

fn(τ)

q−1∑
m=0

ξmfm(t− τ) dτ .

Then d(θ′) = (d0(θ
′), . . . , dq−1(θ

′)) is called a delay decoder if

û(θ − θ′) =
q−1∑
m=0

ξmfm(θ − θ′) =
〈
d(θ′),m(θ)

〉
=

q−1∑
n=0

dn(θ
′)

∫ θ

0

fn(τ)

q−1∑
m=0

ξmfm(θ − τ) dτ .

(6)

Lemma 3. For the Legendre polynomials P̃n(tθ−1), the delay decoder d(θ′) is(
d(θ′)

)
m

=
2m+ 1

θ
P̃m(θ′θ−1) .

Proof. Let fn(t) = P̃n(tθ
−1). Combining the proposed delay decoder d(θ′) with

the delay decoder definition yields

〈
d(θ′),m(θ)

〉
=

q−1∑
n=0

2n+ 1

θ
P̃n(θ

′θ−1)

∫ θ

0

P̃n(τθ
−1)

q−1∑
m=0

ξmP̃m((θ − τ)θ−1) dτ

=

q−1∑
n=0

q−1∑
m=0

ξm
2n+ 1

θ
P̃n(θ

′θ−1)

∫ θ

0

P̃n(τθ
−1)P̃m((θ − τ)θ−1) dτ .

The integral can be simplified using two properties of the Legendre polynomials∫ 1

0

P̃n(τ)P̃m(τ) dτ =
δnm

2m+ 1
, (Orthogonality)

P̃n(t) = (−1)nP̃n(1− t) , (Parity)

6



where δij is the Kronecker delta. Continuing the above set of equations we get

〈
d(θ′),m(θ)

〉
=

q−1∑
n=0

q−1∑
m=0

ξm
2n+ 1

θ
P̃n(θ

′θ−1)(−1)n θδmn
2n+ 1

=

q−1∑
n=0

ξn(−1)nP̃n(θ′θ−1) = û(θ − θ′) .

Given the concept of a “delay decoder” we can construct an approximate
version of eq. (5) that reconstructs u(t− θ) from the system state m(t)

d

dt
m(t) = Am(t) + Bu(t)− e(θ)〈d(θ),m(t)〉 . (7)

The approximate nature of this equation comes from u(t) not necessarily being
expressible as a linear combination of the basis functions, as required in our
definition of “delay decoder”. We discuss the consequences of this in more detail
in Section 2.4; before we get there, we first simplify eq. (7) a little further by
collapsing the encoder e(θ) and the delay decoder d(θ) into a single matrix Γ.

Definition 3 (Delay re-encoder). Let e(θ) be the encoding vector containing
the impulse response of a linear system A, B at time θ, i.e.,

e(θ) = exp(Aθ)B =
(
f0(θ), . . . , fq−1(θ)

)
, (8)

and d(θ) denote the delay decoder of order q for the basis functions fn produced
by the impulse response of the dynamical system. Furthermore, let “�” denote
the outer product. Then Γ = e(θ)� d(θ) with Γ ∈ Rq×q is the delay re-encoder
of order q. This matrix can be used to write eq. (7) more compactly

d

dt
m(t) =

(
A− Γ

)
m(t) + Bu(t)

Example 3. For the shifted Legendre polynomials (and, correspondingly, the
Legendre system) the delay re-encoder Γ̄ is simply given as(

Γ̄
)
ij
= ei(θ)dj(θ) =

2j + 1

θ
P̃i−1(θθ

−1)P̃j−1(θθ
−1) =

2j + 1

θ
. (9)

For θ = 1 and q = 6 the delay re-encoder is

Γ̄ =


1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11

 .

Notice that, in general, Â = Ā− Γ̄. That is, the LDN feedback matrix Â (eq. 1)
is simply the difference between the Legendre system feedback matrix Ā (eq. 2)
and the delay re-encoder Γ̄ for the Legendre system (eq. 9).
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2.4 Impulse response in the limit q →∞
The “information erasure” technique from eq. (7) uses a delay decoder d(θ′)
to reconstruct a delayed input signal u(t− θ′) from the system state m(t). In
general, this reconstruction is an approximation, since most u(t) cannot be
expressed as a linear combination of the basis functions fn generated by the LTI
system—a condition we assumed to be true when we derived d(θ′).

Aliasing of u(t) onto û(t) Fortunately, this is less of a problem as it may
seem—convolving with the impulse response automatically represents the signal
u(t) with respect to fn. To see why this is, consider the case of a perfectly
windowed LTI system generating a function basis (using eq. (5) from Lemma 2).
The system continuously maps (“aliases”) a segment of the input signal u[t−θ,t]
onto a signal û[t−θ,t]. This û[t−θ,t] is a linear combination of the basis functions
fn generated by the LTI system and is exactly the function obtained when
applying the delay decoder d(θ′) to the system state m(t)

û[t−θ,t](θ
′) = 〈d(θ′),m(t)〉 =

q−1∑
n=0

ξnfn(θ − θ′) for 0 ≤ θ′ ≤ θ .

Note that this aliasing process merely discards components of the input signal
that cannot be represented in the function basis—there are no destructive aliasing
artefacts as those encountered when violating the Nyquist-Shannon theorem.

Aliasing of an impulse input As we saw in Figure 1, the impulse response of
the LDN system—i.e., the Legendre system with a delay re-encoder (eq. 7)—does
not abruptly disappear for t > θ. Furthermore, the impulse response no longer
perfectly traces out the Legendre polynomials.

Correspondingly, functions are no longer represented with respect to the
originally desired function basis (e.g., the shifted Legendre polynomials), but with
respect to the actual impulse response of the system. While we derive the delay
re-encoder under the assumption that the system generates a desired function
basis, subtracting the delay re-encoder from the feedback matrix inevitably
causes this assumption to be violated.

Hence, there is no guarantee that this method will actually generate an
(almost) finite impulse response. For example, this technique will not work
properly for periodic bases such as the Fourier series, as d(θ) = d(0) in this case.

The discrepancy in the impulse responses stems from aliasing of the impulse
input u(t) = δ(t). There is no finite LTI system that can produce a delayed
Dirac pulse δ(t− θ); in fact, the aliased function û(t) is likely non-zero almost
everywhere and has finite energy at t = 0. The former discrepancy results in the
ringing artefacts in the LDN system response (fig. 1B), the latter discrepancy in
the only gradually disappearing impulse response for t > θ.

The aliased impulses are depicted in Figure 2 for the Legendre system (with
a perfect window applied) and the LDN system (i.e., the Legendre system with
delay re-encoder Γ̄ applied). Although we do not have a rigorous proof for this, it
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Figure 2: Decoding a delayed impulse input u(t) = δ(t) for the Legen-
dre/LDN system with different basis function counts q. Individual graphs
depict û[t−θ,t](θ) = 〈d(θ),m(t)〉, where d(θ) is the delay decoder and m(t) is
the impulse response of the LTI system. Left: Delay decoder applied to the
impulse response of the Legendre system Ā, B̄ with a perfect window (eq. 5).
Right: Delay decoder applied to the LDN system Â, B̂. The decoded function
gradually converges to a Dirac delta δ(t− θ) in both cases, though convergence
is slower for the LDN.
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is safe to assume that in both cases the impulse response converges to a delayed
Dirac pulse δ(t− θ) for q →∞; in this case the LDN system and the perfectly
windowed Legendre system are exactly equal.

3 Arbitrary Polynomial Bases
The techniques we developed in the previous section can be applied to arbitrary
polynomial bases, and not just the Legendre polynomials. In particular, consider
q polynomial basis functions pn of order q

fn(t) = pn(t) =

q−1∑
k=0

λn,kt
k for n ∈ {0, . . . , q − 1} .

As we will see, it is quite trivial to construct a q-dimensional LTI system that
generates the polynomials pn as its impulse response. Unfortunately, computing
the delay decoder d(θ′) tends to be numerically unstable.

3.1 Constructing an LTI system generating a basis
The approach used to prove Lemma 1 can be applied to any set of polynomial
basis functions that fulfils two very mild conditions. First, the polynomials must
be linearly independent. This condition is automatically fulfilled if the functions
are indeed chosen from a single function basis. Second, there must be no t ∈ [0, θ)
such that pn(t) = 0 for all n ∈ {0, . . . , q − 1}—otherwise the impulse response
would be extinguished at that point.

Solving for differentials The LTI system feedback matrix A maps the sys-
tem state m(t) onto the differential d

dtm(t). For an impulse input, the state
is supposed to be equal to the polynomials, i.e., m(t) = (p0(t), . . . , pq−1(t)).
Furthermore, the differential of a polynomial is just another polynomial. It holds

d

dt
pn(t) =

d

dt

q−1∑
k=0

λn,kt
k =

q−1∑
k=1

kλn,kt
k−1 .

We hence need to solve for an A that linearly combines the polynomials pn to
form the individual derivatives:

d
dtp0(t)

...
d
dtpq−1(t)

 = A

 p0(t)
...

pq−1(t)

 . (10)

Linearly combining two polynomials simply generates a new polynomial where
each coefficient k is a weighted sum of the orginal polynomial coefficients. We
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Figure 3: Impulse responses fn(t) of the Chebyshev system and the correspond-
ing dampened version (θ = 1 and q = 6). Dashed grey lines correspond to the
first six shifted Chebyshev polynomials. (A) Impulse response of the Chebyshev
system. (B) Impulse response of the dampened Chebyshev system.

can hence write eq. (10) as as system of linear equations and solve for A

q−1∑
m=0

am,kλm,k =

{
kλn,k−1 if k > 0 ,

0 if k = 0 ,

for n, k ∈ {0, . . . , q − 1} ,
and where

(
A
)
ij
= ai−1,j−1 .

The input matrix B is the x-intercept of the polynomials, i.e.,
(
B
)
i
= λi−1,0.

This equation is
implemented in
the function
mk_poly_basis_lti .

Example 4 (The Chebyshev system). The above method can be used to
determine the LTI system generating the Chebyshev polynomials. The following
is an extrapolation of numerical results; we did not prove that these equations
are indeed correct.

(
A
)
ij
= (2i− 2)


0 if i ≤ j or i+ j is even ,
1 if j = 1 and i > j and i+ j is odd ,
2 if j > 1 and i > j and i+ j is odd ,

(
B
)
i
= (−1)i+1 .

For q = 6 the matrix A takes the following shape

These equations
are implemented
in mk_cheb_lti.
These matrices
can also be
approximated
using the function
mk_cheb_poly_basis
and passing the
result into
mk_poly_basis_lti .

A =


0 0 0 0 0 0
2 0 0 0 0 0
0 8 0 0 0 0
6 0 12 0 0 0
0 16 0 16 0 0
10 0 20 0 20 0

 , B =


1
-1
1
-1
1
-1

 .

The Chebyshev polynomials and the impulse response of the corresponding LTI
system are depicted in Figure 3A.
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3.2 Computing the delay re-encoder
To compute the delay re-encoder Γ = e(θ) � d(θ) we need both the encoder
e(θ) and the delay-decoder d(θ′). While the encoder can be easily computed
according to eq. (8), obtaining d(θ) is a little trickier.

We present three methods for computing the delay decoder d(θ). The first
method directly solves for d(θ); the second method inverts the polynomial basis.
Both methods are unstable for large basis function counts q. The third method is
to discretize the polynomials and to use a matrix pseudo-inverse to approximate
an inverse of the polynomial basis, which can circumvent some of the instabilities.

Directly solving for d(θ) Taking the definition of the delay re-encoder d(θ)
from eq. (6) and substituting fn with a polynomial basis we obtain

q−1∑
i=0

di(θ
′)mi(θ) =

q−1∑
i=0

di(θ
′)

∫ θ

0

fi(τ)û(θ − τ) dτ

=

q−1∑
i=0

di(θ
′)

∫ θ

0

fi(τ)

q−1∑
j=0

ξjfj(θ − τ) dτ

=

q−1∑
i=0

di(θ
′)

∫ θ

0

(
q−1∑
k=0

λi,kτ
k

)
q−1∑
j=0

ξj

(
q−1∑
k=0

λj,k(θ − τ)k
)

dτ

=

q−1∑
j=0

ξj

q−1∑
i=0

di(θ
′)

∫ θ

0

(
q−1∑
k=0

λi,kτ
k

)(
q−1∑
k=0

λj,k(θ − τ)k
)

dτ

!
=

q−1∑
j=0

ξj

q−1∑
k=0

λj,k(θ − θ′)k for all ξj ∈ R

= û(θ − θ′) ,

Substituting pj(θ− τ) with a polynomial p′j(θ) = pj(θ− τ) with coefficients ρj,k:

q−1∑
k=0

λj,k(at+ b)k =

q−1∑
k=0

(
q−1∑
n=k

(
n

k

)
akbn−kλj,n

)
︸ ︷︷ ︸

ρj,k

tk =

q−1∑
k=0

ρj,kt
k ,

where a = −1, b = θ. Since the above equality holds for all possible input signals
û (i.e., any combination of ξj) we get for all j ∈ {0, . . . , q − 1}

q−1∑
i=0

di(θ
′)

∫ θ

0

(
q−1∑
k=0

λi,kτ
k

)(
q−1∑
k=0

ρj,kτ
k

)
dτ =

q−1∑
k=0

λj,k(θ − θ′)k . (11)

The integral can be evaluated in closed form. It holds∫ θ

0

(
q−1∑
k=0

λi,kτ
k

)(
q−1∑
k=0

ρj,kτ
k

)
dτ =

q−1∑
k=0

q−1∑
n=0

θ1+n+k

1 + n+ k
ρj,nλi,k = (ρj)

TQq
θλi ,
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where ρj and λi are vectors of polynomial coefficients. We can write eq. (11) in
matrix-vector equation

PQq
θΛ

Td(θ′) = yθ
′

where Λ,P denote matrices of coefficients λi,k, ρj,k, respectively. The vector yθ
′

This equation is
implemented in
the function
mk_poly_basis_
reencoder_hilbert.

is the right-hand side of eq. (11).
Solving this system of equations tends to be numerically unstable. This

is partially due to the magnitude of the polynomial coefficients, and partially
due to Qq

θ. For θ = 1, this matrix is known as the “Hilbert matrix”, which is
notoriously ill-conditioned—although a closed-form inverse exists (Press et al.,
2007, Section 2.8, p. 94; Choi, 1983). For q = 4 the Hilbert matrix is

Q4
1 =


1
1

1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 .

Inverting the polynomial basis Above, we directly solved for a single
delay decoder d(θ′). Instead, we can compute an “inverse” of the q polynomial
basis functions. Evaluating this inverse basis at any point θ′ will result in the
corresponding delay decoder.

The idea is simply that we would like to construct a set of polynomials p̃n
with coefficients ρn,k such that

〈pi, p̃j〉 =
∫ θ

0

(
q−1∑
k=0

λi,kτ
k

)(
q−1∑
k=0

ρj,kτ
k

)
dτ = δij ,

where δij is the Kronecker delta. As above, the integral can be expressed using
the scaled Hilbert matrix Qq

θ. We get the matrix-vector equation

PQq
θΛ

T = ΛQq
θP

T = I ,

where, again, Λ and P denote matrices of polynomial coefficients λi,k, ρj,k,

This equation is
implemented in
the functions
mk_poly_basis
_inverse and
mk_poly_basis_
reencoder_hilbert_2.respectively. This equation can be easily solved for the polynomial coefficients

P, which in turn define p̃n. Evaluating this set at any point θ′ yields the
corresponding delay decoder d(θ).2

Unfortunately, and unsurprisingly, this method tends to struggle with exactly
the same numerical instabilities as the previous method.

Discrete inversion of the polynomial basis A rather naive approach that
tends to work remarkably well is to perform the above basis inversion technique
on a discretized basis. At least under the assumption that the polynomials
themselves can be evaluated at any point t ∈ [0, θ], this tends to be more stable.

2We have not proved this formally, though showing this should be relatively straight forward.

13



Let L ∈ Rq×N , where N is the number of samples and

(L)ij = pi−1

(
θ(j − 1)

N − 1

)
.

The delay decoder corresponds to the individual rows of the pseudo-inverse
L+ ∈ RN×q scaled by a factor N/θ:

L+ = LT
(
LLT

)−1
, where d(θ′) =

N

θ
L+
i and i =

⌊
(N − 1)θ′

θ

⌋
+ 1 .

This method provides reasonably precise results for N on the order of 106.

Example 5 (The Chebyshev system delay decoder). Using any of the above
methods, we obtain the following delay decoder d(θ) for the Chebyshev system
and q = 6:

d(θ) =
(
4.79 8.20 9.23 7.38 8.12 5.41 5.87

)T
.

The dampened Chebyshev system is depicted in Figure 3B. Note that in contrast

This equation is
implemented in
the functions
mk_poly_basis
_rencoder and
mk_poly_sys
_rencoder.to the Legendre polynomials, the individual delay decoder coefficients depend

on the number of basis functions q. This is generally the case for polynomial
bases such as the Chebyshev basis that are not orthogonal with respect to a unit
weighting. While there seems to be some systematicity in the Chebyshev delay
decoder with respect to q, it is not immediately apparent how to fit a precise
closed-form solution to these results.

Note that polynomial bases that are orthogonal with respect to a unit
weighting can be seen as a rotated version of the Legendre polynomials; there is
little to be gained from not using the Legendre polynomials.

4 Conclusion
We presented an alternative derivation of the Legendre Delay Network (LDN)
from an LTI system generating the Legendre polynomials. We show that this
system can be turned into the LDN by subtracting a delay re-encoder Γ from
the feedback matrix A. This operation approximates a rectangle window applied
to the impulse response. This method can be used in conjunction with arbitrary
polynomial bases, although numerical instabilities may make this difficult in
practice.

Another downside of the presented method is that there is no formal guarantee
that subtracting the delay re-encoder Γ from the feedback matrix A will actually
result in an (almost) finite impulse response. While this seems to be the case
for the polynomial bases we tested—including random polynomial bases—it
would be nice to have more formal guarantees. Future work in this direction
should establish a set of sufficient and necessary conditions pertaining the basis
functions fn such that the dampened system A− Γ generating these functions
is guaranteed to decay to zero.
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