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Abstract

We discuss a minimal, unconstrained log-Cholesky parametrisation of
radial basis functions (RBFs) and the corresponding partial derivatives.
This is useful when using RBFs as part of neural network that is either
trained in a supervised fashion via error backpropagation, or unsupervised
using a homeostasis mechanism. We perform some experiments and discuss
potential caveats when using RBFs in this way. Furthermore, we compare
RBFs to the Spatial Semantic Pointer similarity that can be used to
construct networks with sparse hidden representations resembling those
found in RBF networks.

1 Introduction
Radial basis functions (RBFs) are a family of nonlinearities used in artificial
neural networks. The activity of an RBF unit (or “neuron”) a(~x; ~µ) depends on
the distance of the input ~x ∈ Rm to a centre ~µ ∈ Rm assigned to each unit in
the network. Typically, RBFs are constructed in such a way that the smaller
the distance between ~x and ~µ, the higher the neural activity. Furthermore,
there is only a small region in the input space where an individual neuron has
significant activity. This makes RBFs particularly useful when constructing
sparse, distributed representations of an input ~x.

Mathematically, the most general form of a radial basis function is

a(~x; ~µ) = ϕ
(
d(~x, ~µ)

)
.

Here, the function d(~x, ~y) is an arbitrary metric, i.e., a function that is symmetric,
obeys the triangle inequality, and is zero for ~x = ~y. The function ϕ : [0,∞) −→ R
translates the distance returned by d into a neural activity. This results in an
activation function a(~x; ~µ) that—for typical choices of d—is characteristically
rotation-symmetric around its centre ~µ.
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Gaussian RBFs The canonical choice for ϕ and d is

ϕ(ξ) = exp(−ξ2) , and d(~x, ~y) =
√

(~x− ~y)TΣ−1(~x− ~y) , (1)

where d is the so-called Mahalanobis distance (or Mahalanobis metric) with a
covariance matrix Σ ∈ Rm×m. The covariance matrix can be used to stretch the
input space along arbitrarily rotated coordinate axes. Thus, the neuron can be
made more or less sensitive to changes in certain directions of the input space.
For Σ = I the Mahalanobis distance is equivalent to the Euclidian norm.

An important interpretation of these choices for ϕ and d is that the corre-
sponding a(~x) is proportional to the probability density function of a multivariate
Gaussian distribution:

a(~x; ~µ,Σ) ∝ 1√
(2π)m|Σ|

exp
(
− (~x− ~µ)TΣ−1(~x− ~µ)

)
.̧ (2)

In this interpretation, the covariance matrix Σ describes the rotation and elon-
gation of the iso-density ellipsoid of the Gaussian. The inverse of the covariance
matrix, Σ−1, is the so-called precision matrix.

Conditions for ϕ(ξ) Of course, the exponential discussed above is not the
only possible choice for ϕ(ξ); in principle, this function is completely arbitrary.
However, in an RBF network that is meant to be used as a universal function
approximator, ϕ(ξ) must be continuous “almost everywhere”1 and have a non-
zero indefinite integral

∫∞
0
ϕ(ξ) dξ (Park and Sandberg, 1991).2 Note that this

formalisation explicitly includes monotonically increasing ϕ(ξ). This can for
example result in neurons with minimal activity for ~x = ~µ.

Some authors prefer formalisations of RBFs with a more “natural” set of
restrictions. For example, Karayiannis (1999) requires ϕ(

√
ξ) to be strictly

positive over ξ ∈ (0,∞), its derivative to be strictly negative (i.e., monotonically
decreasing), and its second derivative to be as well strictly positive (i.e., the rate
of decrease increases over time).

Applications of RBFs Classically, RBFs have been used in single-layer neural
networks in which the RBF parameters remain unchanged; only the output layer
is learned (Broomhead and Lowe, 1988). In such networks, the RBF parameters
may be selected using techniques such as k-means and expectation maximisation
(Wu et al., 2012). A simple technique for initialising the means ~µ is to simply
choose them randomly from input samples ~xi (Wu et al., 2012); other reasonable
initialisations include sampling ~µ uniformly across the represented space or, in
our eyes even better yet, selecting ~µ from a Halton sequence (Chi, Mascagni,
and Warnock, 2005).

Outside of neural networks, the so called “RBF kernel” is used in techniques
such as support vector machines (Wu et al., 2012).

1Being “continuous almost everywhere” is a technical term describing that the set of
discontinuities has measure zero, i.e., there are only countably many discontinuities.

2The proof by Park and Sandberg is more general, listing requirements for the multivariate
kernel function K(~x− ~µ), and not just ϕ(ξ).
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Outline and contributions of this paper When including RBFs in a neural
network, where we would like to learn ~µ and Σ, we need to consider two minor
challenges. First, we need to find a minimal and unconstrained parametrisation
of Σ that preserves its covariance nature. Second, we need to find the derivatives
of a(~x) with respect to ~µ and Σ−1. We discuss solutions to these challenges in
the next two sections. Note that while we did not find these particular solutions
in the literature, they are neither complicated nor overly original, so we would
be surprised if this had not already been discussed elsewhere.

We follow with a discussion of how backpropagation can be used in con-
junction with these gradients to learn the parameters. Furthermore, we discuss
experiments that highlight some caveats of learning RBF parameters in this way.
We close with a short discussion comparing RBFs to the spatial semantic pointer
(SSP) similarity from a theoretical perspective. The SSP similarity shares some
properties with RBFs and can similarly be interpreted as the activation of a
hidden unit in a neural network.

2 Parametrisation
Representing covariance or precision? A first decision we need to make
when parametrising a(~x) is whether we should represent Σ or its inverse Σ−1.
Representing Σ−1 has the advantage of eliminating a computationally expensive
matrix inversion whenever we evaluate a(~x) or any of its derivatives. However, we
need to make sure that there is a one-to-one mapping between our parametrisation
of Σ−1 and the space of all possible covariance matrices Σ. As we will show
in a moment, this is indeed possible, so we will pursue a parametrisation that
directly represents Σ−1.

Minimal and unconstrained parametrisations Optimally, our parametri-
sation ~θ = (θ1, . . . , θn) should be unconstrained and minimal. “Unconstrained”
means that we can set any individual parameter θi to an arbitrary value on the
real number line without violating the restrictions imposed on the parameters
(such as Σ being a covariance matrix). Such an unconstrained representation
would be nice, because it eliminates potential post-processing steps after a
parameter update that constrain the parameters to their respective subspace.

By “minimal” we mean that the number of parameters n is equal to the
degrees of freedom of the equation. We would like to find the smallest number
of parameters such that the function space spanned by this parametrisation is
equal to the function space spanned by our original parametrisation. In other
words, and more loosely, there should be a one-to-one mapping between the
parameters and the actual function that is being realized.3 Such a minimal

3In general, requiring a one-to-one mapping may be too strict, since there may be poles in
the parametrisation where, when fixing one set of the parameter space, other parameters can
be varied without changing the output of the function. One parametrisation of the covariance
matrix with this problem would be using rotation angles and radii to describe the ellipsoid
(e.g., the “Givens” representation discussed below). When all radii are equal (i.e., the ellipsoid
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representation is desirable when performing parameter optimisation. A non-
minimal representation implies that the same function can be represented using
different parameter combinations. This results in multiple local minima in the
loss function and may thus slow down convergence.

Parametrising the precision matrix Σ−1 While we can just use the m
individual coefficients of the centre vector ~µ as parameters, the m2 coefficients
of Σ−1 do not form an unconstrained or a minimal parametrisation. First of
all, it cannot be unconstrained, because there are Σ−1 that are not the inverse
of a covariance matrix; in fact there are some Σ−1 that cannot be the inverse
of any matrix (i.e., if Σ−1 itself is non-invertible/singular). Second, it cannot
be minimal, because covariance matrices are symmetric, and thus only have
M = m(m+1)

2 degrees of freedom.
To find a minimal parametrisation of Σ−1 and to ensure that this choice is

correct, we first need to review a few concepts from linear algebra. Specifically,
we will use the fact that the concepts of covariance matrices and symmetric
positive semidefinite matrices are equivalent, and that symmetry and positive
definitiveness are preserved by inversion.

2.1 Mathematical background
Most proofs and definitions in this section can be found in any undergrad linear
algebra textbook. Still, we have decided to include them here for clarity. Perhaps
the most interesting lemma presented below is the equivalence of the concepts
of “covariance matrix” and “symmetric positive semidefinite matrix”.

Definition 1. Covariance and covariance matrix. The covariance Cov[X] of a
set of vectors X = {~x1, . . . , ~xN} is defined as

Cov
[
X
]

=
1

N

N∑
i=1

(
~xi − x̄

)(
~xi − x̄

)T
, where x̄ = E[X] =

1

N

N∑
i=1

~xi .

In the following, we refer to any matrix that can be written as such an outer
product as a covariance matrix. Note that a covariance matrix is square, positive,
and symmetric.

Definition 2. Positive definite and positive semidefinite. Let Σ be a square
matrix. Σ is positive definite if ~yTΣ~y > 0 for all ~y ∈ Rm \ {0}. Σ is positive
semidefinite if the more relaxed condition ~yTΣ~y ≥ 0 holds for all ~y ∈ Rm.

Lemma 1. A matrix Σ is symmetric and positive semidefinite ⇔ all eigenvalues
of Σ are nonnegative.

Proof. First consider the “⇒” direction. Let Σ be a symmetric positive semidefi-
nite matrix and ~x, λ be an eigenvector, eigenvalue pair of Σ. That is, it holds

is spherical), the ellipsoid is rotation-invariant. We will choose a parametrisation that does not
have any such poles.
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Σ~x = λ~x. Then by definition of positive semidefinite, ~xTΣ~x = λ~xT~x ≥ 0. Since
Σ is symmetric, all eigenvalues and eigenvectors must be real and it follows
λ ≥ 0. For “⇐”, since Σ is symmetric, we can write the matrix using the
eigendecomposition as Σ = V ΛV T , where V is a real matrix of Eigenvectors ~vi
and Λ a diagonal matrix of eigenvalues. Since Λ is nonnegative, we can write
V ΛV T = (V

√
Λ)(V

√
Λ)T . It holds

~yTΣ~y = ~yT
(
V
√

Λ
)(
V
√

Λ
)T
~y =

m∑
i=1

〈
~y,
(
V
√

Λ
)
i

〉2 ≥ 0 for all ~y ∈ Rm .

Note that for symmetric positive definite matrices (note the missing “semi”)
all eigenvalues are strictly positive, and, vice versa, if all eigenvalues of a matrix
are strictly positive, then the matrix is positive definite. The proof is analogous
to the above.

Lemma 2. Σ is a covariance matrix⇔ Σ is symmetric and positive semidefinite.

Proof. Again, first consider the “⇒” direction. Let Σ be a covariance matrix.
By construction, the matrix is symmetric. For arbitrary ~y

~yTΣ~y =
1

N

N∑
i=1

~yT
(
~xi − x̄

)(
~xi − x̄

)T
~y =

1

N

N∑
i=1

〈
~y,
(
~xi − x̄

)〉〈(
~xi − x̄

)
, ~y
〉

=
1

N

N∑
i=1

〈
~y,
(
~xi − x̄

)〉2 ≥ 0 .

Hence ~yTΣ~y ≥ 0 for all ~y ∈ Rm, which is the definition of positive semidefinite.
For “⇐”, symmetry and positive semidefiniteness implies that the eigendecom-
position Σ = V ΛV T exists, where V are real, orthogonal matrices. Since Λ is
non-negative (see the above lemma), we can again rewrite the decomposition as
Σ = (V

√
Λ)
(
V
√

Λ
)T . Let X = {~x1, . . . , ~x2d} be a set of N = 2d vectors defined

as follows:

~x2i−1 =

√
Nλi
2

~vi , ~x2i = −
√
Nλi
2

~vi , for all i ∈ {1, . . . , d} .

Since each vector is included twice, once with a positive and negative sign, the
mean of X is zero and we have Σ = Cov[X].

Lemma 3. All symmetric positive definite matrices are invertible. The inverse
of a positive definite matrix is still positive definite.

Proof. Let Σ be a symmetric positive definite matrix, and Σ = V ΛV T its
eigendecomposition. Since, by the above lemma, the diagonal matrix Λ is strictly
positive, it holds Σ−1 = V Λ−1V T . Since Λ−1 is still strictly positive Σ−1 must
also be positive definite.
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Note that one can trivially find an example of a positive semidefinite matrix
that is not invertible—hence, to ensure invertibility of a covariance matrix, we
must ensure that it is strictly positive definite. In other words, the concept of
an invertible covariance matrix, and a symmetric, positive definite matrix are
equivalent.

2.2 Representation of positive semidefinite matrices using
the log-Cholesky representation

Given the concepts reviewed above, we can safely represent the precision matrix
Σ−1 as a positive definite matrix. This ensures that, first, Σ−1 always corre-
sponds to a covariance matrix. Second, every possible covariance matrix can be
represented in this way.

Of course, the question we need to answer now is how to represent a symmetric
positive definite matrix in a minimal and unconstrained manner. Symmetry
implies that we only have M = (m+1)m

2 degrees of freedom, since (Σ)ij = (Σ)ji.
We could thus, for example, represent the entire matrix by only storing the upper
triangle, including the diagonal. However, this will not result in an unconstrained
representation, since it does not ensure positive definiteness.

Minimal, unconstrained representations of invertible covariance matrices have
previously been explored by Pinheiro and Bates (1996). In the following, we
provide a quick overview of the representations presented in that paper.

Cholesky representation Every symmetric positive definite matrix Σ can
be decomposed as Σ = LTL, where (L)ij = `ij is an upper triangular matrix.
This is known as the Cholesky decomposition. We can directly use the upper
triangle of L as our parameter vector ~θ. For example, one way of unpacking L
into ~θ is to successively move along the diagonals

~θ =
(
`11, `22, . . . , `m,m︸ ︷︷ ︸

Main diagonal

, `12, `23, . . . `m−1,m︸ ︷︷ ︸
1st off-diagonal

, . . . , `1,m
)
.

One short-coming of this representation is that the diagonal elements of Σ are
the sum of squares of each row in L, i.e., (Σ)ii =

∑m
j=1 `

2
ij . We can thus find 2m

different ways in which the same Σ can be encoded by systematically flipping
the signs of `ij . As mentioned above, the additional local minima induced
by these ambiguities can be problematic when using such a representation for
optimization. Furthermore, setting one or more `ii to zero could result in a
non-invertible matrix. We could of course constrain the `ii to strictly positive
values, but we were explicitly looking for an unconstrained representation.

log-Cholesky representation A solution to both problems mentioned above
is to simply represent the diagonal elements of L in terms of their logarithm.
The remaining coefficients can be stored as-is. That is, our parameter vector ~θ
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takes on the following form

~θ =
(

log(`11), log(`22), . . . , log(`m,m)︸ ︷︷ ︸
Main diagonal

, `12, `23, . . . `m−1,m︸ ︷︷ ︸
1st off-diagonal

, . . . , `1,m
)
. (3)

This representation of covariance matrices is simple, fully unconstrained, minimal,
and ensures a one-to-one mapping between the parameter space and every
symmetric positive definite matrix. This is also the representation we will use
in the following; however, for completeness, we will first review the remaining
three representations proposed by Pinheiro et al.

Spherical and Givens representation The intuition for these two repre-
sentations stems from the eigendecomposition of a symmetric positive definite
matrix, i.e., Σ = V ΛV T . Since V is orthogonal, it can, as already alluded to
in the introduction, be seen as a rotated coordinate system, and Λ as scaling
factors stretching each individual dimension. In an m-dimensional space there
are M −m primitive rotations (so called “Givens” matrices) and m independent
scaling factors. This would result in a parameter vector ~θ of the following form:

~θ =
(
s1, . . . , sm︸ ︷︷ ︸

Scaling

, α12, α23, . . . , αm−1,m, . . . , α1,m︸ ︷︷ ︸
Rotations

)
Pinheiro et al. present an efficient way to compute the entry `ij in the Cholesky
factorization without requiring the multiplication of M −m Givens matrices,
although this requires some changes to the representation that make it a little less
geometrically interpretable. Pinheiro et al. call this the “Spherical representation”.
Alternatively, one can of course directly use the parameter vector to construct
the eigenvectors V and eigenvalues Λ. This is called the “Givens” representation.

These two representations have the upside of being geometrically intuitive.
However, a naive representation of the angles and scaling factors would not result
in a unique representation—all scaling factors need to be constrained to strictly
positive values and all angles need to be restricted to a range of 180◦. However,
as Pinheiro et al. discuss, both scaling factors and angles can be represented
using logarithms to overcome this limitation.

Matrix logarithm The idea behind this representation is to set θ to the the
upper triangle of the matrix logarithm log(Σ). To see why this is reasonable, let
the eigendecomposition of Σ be Σ = V ΛV T . Then, it holds log(Σ) = V log(Λ)V T .
Hence, as long as we ensure that log(Σ) is symmetric (e.g., by only storing the
upper triangle in ~θ), there is a one-to-one mapping between log(Σ) and Σ without
putting any constraints on the parameter vector.

The upside of this representation is that it is mathematically elegant, the
downside is that it requires a costly matrix exponentiation operation in order to
convert ~θ back to Σ. Requiring matrix exponentiation also makes computing
the differentials we need for gradient descent more complicated.
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3 Derivatives
We have now established that we can parametrise the precision matrix Σ−1 as
an M -dimensional parameter vector ~θ using the log-Cholesky representation.
We further need m coefficients to represent the RBF centre ~µ.

When using gradient-based methods to learn these parameters, we must
compute the derivative of the neural activities with respect to the parameters ~θ
and ~µ. Additionally, it is sometimes useful to be able to compute the gradient of
the function with respect to the input ~x—which, due to symmetry of the metric
d is equivalent in structure to the derivative with respect to ~µ.

In the following, we derive all three derivatives of the RBF activity a(~x; ~µ, ~θ)
for an RBF with an arbitrary non-linearity ϕ(ξ) and the Mahalanobis norm, i.e.,

a(~x; ~µ, ~θ) = ϕ
(
d(~x, ~µ; ~θ)

)
where d(~x, ~y) =

√
(~x− ~y)TΣ−1(~θ)(~x− ~y) .

To simplify things, we use the squared metric d in most equations, denoted as

d2(~x, ~y) = (~x− ~y)TΣ−1(~θ)(~x− ~y) .

Applying the chain rule The first step to computing any derivative of
a(~x; ~µ, ~θ) with respect to ~x, ~µ, or ~θ is to apply the chain rule twice—once for ϕ
and once for the square root. Taking, for example, the derivative with respect
to ~x we get

∂

∂~x
ϕ
(
d(~x, ~µ; ~θ)

)
= ϕ′

(
d(~x, ~µ; ~θ)

)( ∂

∂~x
d(~x, ~µ; ~θ)

)
= ϕ′

(
d(~x, ~µ; ~θ)

)( ∂
∂~xd

2(~x, ~µ; ~θ)

2d2(~x, ~µ; ~θ)

)
, where ϕ′(ξ) =

d

dξ
ϕ(ξ) .

Of course, the denominator in the above fraction disappears if ϕ is already
defined in terms of the squared metric.

3.1 Derivative with respect to ~x, ~µ
The differential with respect to the input vector ~x can be expressed as a 1× d
Jacobian matrix, where each column i corresponds to the derivative with respect
to the input dimension xi. Expanding the partial differential of d2 with respect
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to ~x we obtain

∂

∂~x
d2(~x, ~µ; ~θ) =

∂

∂~x
(~x− ~µ)TΣ−1(~θ)(~x− ~µ)

=

(
∂

∂~x
(~x− ~µ)T

)
︸ ︷︷ ︸

=Km,1

Σ−1(~θ)(~x− ~µ) + (~x− ~µ)T
(
∂

∂~x
Σ−1(~θ)(~x− ~µ)

)

= (~x− ~µ)T
(
Σ−1(~θ)

)T
+ (~x− ~µ)TΣ−1(~θ)

= (~x− ~µ)T
((

Σ−1(~θ)
)T

+ Σ−1(~θ)
)

= 2(~x− ~µ)TΣ−1(~θ) ,

where Km,1 is the so called “commutation matrix” with Km,1~x = ~xT (see
Lütkepohl, 1997, pp. 9, 183). As mentioned above, the derivative with respect
to ~µ is the similar in structure except for the sign. It holds

∂

∂~µ
d2(~x, ~µ; ~θ) = −2(~x− ~µ)TΣ−1(~θ) .

3.2 Derivative with respect to ~θ

Computing the differential with respect to ~θ is a little more involved—in par-
ticular, we need to take into account that the diagonal elements of Σ−1 are
represented as a logarithm. Furthermore, each entry k in the vector ~θ corre-
sponds to a specific row ik and column jk. The exact mapping depends on how
the matrix Σ−1 is vectorized—the mapping from vector index k to matrix cell
indices (ik, jk) in eq. (3) are just a suggestion. In the following, we write the
derivative in its most general form, using the mapped indices (ik, jk).

We first write down the matrix-valued derivative of Σ−1(~θ) with respect to ~θ

d

dθk
Σ−1(~θ) =

d

dθk
L(~θ)TL(~θ)

=

(
d

dθk
L(~θ)T

)
L(~θ) + L(~θ)T

(
d

dθk
L(~θ)

)
= θ′k

(
∆jk,ikL(~θ) + L(~θ)T∆ik,jk

)
= θ′k

(
∆jk,ikL(~θ) +

(
∆jk,ikL(~θ)

)T)
, (4)

where ~θ′ and ∆i,j are defined as

θ′k =

{
exp(θk) if ik = jk ,

1 if ik 6= jk ,

(
∆i,j

)
i′,j′

=

{
1 if i = i′ and j = j′

0 otherwise .

In other words, ∆i,j is the matrix with all-zero entries except for the cell at
row i, and column j, which is set to one. In general, multiplying ∆i,j with a
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matrix A from the right can be used to take the jth row of A and copying it
into the ith row of the result. Hence, the above expression can be interpreted as
taking the ikth row of θ′kL(~θ) and placing it twice in the resulting matrix. Once
as a row-vector in the jkth result row, and once as a column-vector in the jkth
result column.

Multiplying eq. (4) by (~x− ~µ) from both sides and expanding yields

∂

∂θk
d2(~x, ~µ; ~θ) = (~x− ~µ)T

(
d

dθk
Σ−1(~θ)

)
(~x− ~µ)

= θ′k(~x− ~µ)T
(

∆jk,ikL(~θ) +
(
∆jk,ikL(~θ)

)T)
(~x− ~µ)

= θ′k

(
(~x− ~µ)T∆jk,ikL(~θ)(~x− ~µ) + (~x− ~µ)T

(
∆jk,ikL(~θ)

)T
(~x− ~µ)

)
.

Both summands in the above equation evaluate to the same value. We get

∂

∂θk
d2(~x, ~µ; ~θ) = 2θ′k

(
~x− ~µ

)
jk

〈(
L(~θ)

)
ik
, ~x− ~µ

〉
.

When implementing these equations as a computer program, it may be
convenient to compute the entire gradient vector at once. To this end, we replace
the row-vector (L(~θ))ik with an M ×m matrix L̃(~θ), where the kth row of L̃(~θ)

is simply (L(~θ))ik . Similarly, the vector coefficients of ~x, ~µ can be rearranged
according to jk into new M -dimensional vectors x̃, µ̃. We get

∂

∂~θ
d2(~x, ~µ; ~θ) = 2~θ′ �

(
x̃− µ̃

)
� L̃(~θ)

(
~x− ~µ

)
.

Here, “�” denotes the Hadamard (element-wise) product.

4 Applications and Experiments
Backpropagation in a two-layer network Given the derivatives computed
above we can implement algorithms such as error backpropagation. For example,
consider a typical two-layer RBF network with m-dimensional input, n hidden
units, and k outputs, as well as a set ofN training samples {(~x1,~t1), . . . , (~xN ,~tN )}.
We can optimize the least-squares loss

E =
1

N

N∑
i=1

(
~y(~xi)− ~ti

)2
=

1

N

N∑
i=1

(
W~a(~x;M,Θ)− ~ti

)2
.

Here, ~y(~x) describes the network output, W ∈ Rk×n the readout weights, and ~a
the activities of the hidden layer. M ∈ Rn×m and Θ ∈ Rn×M are matrices of
RBF centres ~µj and log-Cholesky precision matrix parameters ~θj .

The readout weights W can be trained using the delta learning rule. The
RBF parameters are trained by backpropagating the error ~εj = (~ti− ~yi) through
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WT , resulting in the per-hidden-unit error ε̃i = WT~εi. The update to ~θj and ~µj
for j ∈ {1, . . . , n} is proportional to the product of ε̃ij and the above derivatives,

∆~µj = −η1
N

N∑
i=1

ε̃ij
∂

∂~µj
aj(~x; ~µj , ~θj) , ∆~θj = −η2

N

N∑
i=1

ε̃ij
∂

∂~θj
aj(~x; ~µj , ~θj) , (5)

where η1 and η2 are two independent learning rates for the centres and precision
matrix parameters.

Similar backpropagation based techniques have been thoroughly explored
by other researchers, though the publications encountered by the author of
this technical report either do not learn the precision or covariance matrix at
all (Karayiannis, 1999), or assume that Σ is a diagonal matrix (i.e., only the
variances are learned; Wu et al., 2012; Schwenker, Kestler, and Palm, 2001). In
addition, and as mentioned in the introduction, RBFs are classically pre-trained
in conjunction with specialised algorithms such as k-means and expectation
maximisation (Schwenker, Kestler, and Palm, 2001). However, learning the
centres and the full covariance matrices outside of a back-propagation step in
such a specialised manner is only possible in a two-layer neural network.

Using linlog- instead of log-Cholesky One potential problem with the log-
Cholesky representation is that exponentiation of the first m elements in the
parameter vector ~m may lead to excessively large gradients, making the opti-
mization problem less stable. This could theoretically be solved by replacing the
logarithm with a piecewise linear-logarithmic function (hereby dubbed “linlog”):

linlog(ξ) =

{
ξ − 1 if ξ > 1 ,

log(ξ) if ξ ≤ 1 ,
linlog−1(ξ) =

{
ξ + 1 if ξ > 0 ,

exp(ξ) if ξ ≤ 0 .
(Linlog)

Our experiments (see below) indicate that there is virtually no difference between
linlog and log with respect to the convergence behaviour during gradient descent.
We correspondingly recommend using the more canonical log-Cholesky.

Caveats when learning ~µ and ~θ using supervised gradient descent
Learning both ~µ and the precision matrix parametrised by ~θ at the same time
comes with some caveats that are best explored in a simplified setup.

Consider learning the parameters ~µ, ~θ of a single quadratic RBF with ϕ(ξ) =
ξ2. To learn these parameters we assume that there is a “supervising” RBF
with ground-truth parameters ~µgt and ~θgt. We sample ~x from the Gaussian
distribution corresponding to the ground-truth parameters and use gradient
descent to minimize the quadratic loss function between the activities of the
ground-truth and learned unit

E =
1

N

N∑
i=1

(
a(~x; ~µgt, ~θgt)− a(~x; ~µ, ~θ)

)2
, where ~x ∼ N

(
~µgt,Σ(~θgt)

)
. (6)
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Put differently, we are learning the parameters of the probability distri-
bution underlying ~x using the additional information encoded in the activities
a(~x; ~µgt, ~θgt). Although this seems to be a very simple problem, doing this naively
as outlined above tends to not work very well. In particular, the convergence of
the system to the correct parameters is extremely slow.

An example demonstrating the slow convergence is depicted in fig. 1. It takes
about 35 000 iterations to learn the five parameters describing the Mahalanobis
distance in two-dimensional space using a minibatch size of 100 and a learning
rate η1 = η2 = 10−3. Using a smaller batch size results in slightly faster
convergence (about 25 000 iterations), at the cost of being more unstable. This
is illustrated in fig. 2, which reports the error statistics for this experiment over
one thousand trials and the percentage of “failed” (diverged) trials over time.

The reason for this slow convergence is the mismatch between the covariance
estimate Σ(~θ) and the ground-truth covariance Σ(~θgt). In this particular learning
setup, this mismatch leads to the estimated mean ~µ being systematically biased
towards a “phantom mean”. This phenomenon is illustrated in fig. 3. If ~θgt and ~θ
are equal, the loss function E has a global minimum at ~µgt just after averaging
three samples. For mismatched ~θgt and ~θ this is not the case; a relatively large
number of samples must be averaged for a reasonable estimate, and even then,
it is not guaranteed that the global minimum will converge to the correct mean.

Making matters worse, an incorrect estimate of ~µ in turn leads to an erro-
neous covariance estimate Σ(~θ). Even in this simple case, this may lead to the
parameters ~θ, ~µ being “stuck” in a local minimum.

It should be noted that these results only have limited relevance when
considering learning in a neural network. However, these considerations do
highlight that the relatively large number of parameters per unit (compared to a
single m-dimensional weight vector in a “standard” two-layer network) can induce
sub-optimal local minima in the loss function. Some gentle source of stochasticity
is needed in the optimizer to overcome these minima without causing divergence
of the parameter set.

Unsupervised learning of ~µ and ~θ One creative solution to the particular
learning problem considered above is unsupervised learning of the parameters ~µ
and ~θ. Remember that we sample ~x from the ground-truth distribution N

(
~µgt,

Σ(~θgt)
)
. Hence, the parameters we are trying to estimate are implicitly encoded

in the input time-series. We can try to extract these parameters without a
supervised reference activity agt = a(~x; ~µgt, ~θgt).

To learn the distribution of the input we must simply use the following
(independent) errors for the mean and for theta in eq. (5)

ε̃~µ = a(~x; ~µ, ~θ)− ϕ(0) , ε̃~θ = a(~x; ~µ, ~θ)− σ , (7)

where σ is a parameter that scales the learned covariance matrix. We found
through experimentation that in the setup described above (i.e., ϕ(ξ) = ξ2) a
value of σ ≈ 4 results in ~θ ≈ ~θgt; further mathematical investigation into the
nature of this parameter is required.
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Figure 1: Learning ~µ and ~θ from a reference distribution parametrised by
~µgt and ~θgt. Top: The black dotted ellipse is a visualisation of the reference
distribution. Coloured ellipses depict the learning progress over time (ellipses
are equidistant in space), colour indicates the iteration. Bottom: Light blue line
is the mean error E over the minibatch. Darker blue line is a low-pass filtered
version of the error. Coloured circles correspond to the iteration in which the
corresponding ellipse was drawn. (A) Data for a minibatch size of 100, i.e., the
error and gradient are averaged over 100 samples before updating the parameters.
(B) Data for a minibatch size of 1, i.e., each sample ~x is processed individually.
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Figure 2: Experiment from fig. 1 repeated 1000 times. Top: Median loss. Filled
regions indicate the quartiles (25%- and 75%-percentiles). Bottom: Fraction
of trials pfail that diverged up to this point, indicating the stability of the
optimization. Small batch sizes tend to converge faster but are less stable.
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Figure 3: Mean estimation error when learning the RBF centre. The black
ellipse is the Gaussian ground-truth distribution underlying the samples ~x (small
purple, green, and yellow circles). Gradient in the background is the loss function
E(~µ) over all samples for a fixed ~θ (eq. (6); lighter colours are smaller errors).
Orange regions correspond to regions with minimum error, orange crosses are
local minima (i.e., the estimated mean). (A, C)Matching estimated covariance ~θ
and ground-truth ~θgt. The estimated mean matches the true mean at nsmpls = 3.
(B) Mismatched ~θ and ~θgt. Convergence is much slower.
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Figure 4: Experiment from fig. 2 repeated with the unsupervised learning rule
from eq. (7). Top: Convergence of ~µ, ~θ to the input distribution is much faster
compared to the supervised learning rule, at least for larger batch sizes. Bottom:
Noise can cause the learned parameters to diverge if nbatch = 1, even after a
good parameter estimate has been reached (note the steady increase in pfail).

Intuitively, Equation (7) can be interpreted as follows. The error term
ε~µ expresses that we would like to adjust the mean in such a way that, on
average, the activity of the neuron is equal to that of a neuron with ~µ = ~µgt, i.e.,
a(E[~x]; ~µgt, ~θ) = ϕ(0). With respect to ε~θ, we adjust ~θ such that, on average,
the neural activity reaches a certain target value σ. This forces the covariance
matrix represented by ~θ to be scaled to a fixed value that is proportional to
the variance of the input samples. With some goodwill such an unsupervised
learning rule can be interpreted as a “homeostasis” mechanism that regulates
the neuron parameters to reach a certain average activity.

Figure 4 depicts the results of an experiment demonstrating the feasibility of
the unsupervised learning rule. Convergence of the parameters is much faster
than the supervised version of the same setup, though for small minibatch
sizes the learning rate likely needs to be reduced to prevent divergence of the
parameter estimates due to random noise.

Still, keep in mind that we only considered a single unit; unsupervised learning
of the input distribution in a single-layer neural network comes with its own set
of challenges.

5 RBFs and the SSP similarity
Spatial Semantic Pointers (SSPs; Komer et al., 2019) encode m-dimensional
spatial information in an m′-dimensional vector space, where m′ � m. SSPs can
be used to represent continuous values in vector-symbolic architectures (Gayler,
2003) and suggest interesting biological interpretations relating them to grid-
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and place-cells (Komer et al., 2019; Komer, 2020; Dumont and Eliasmith, 2020).
A crucial property of SSPs is that summing two SSPs does not correspond

to a transformation of the represented spatial information. Instead, summing
two SSPs results in a new SSP representing both points. In other words, if an
SSP ~a ∈ Rm′

represents the vector ~x ∈ Rm, and another SSP ~b ∈ Rm′
represents

the vector ~y ∈ Rm, then ~a+~b will represent the set {~x, ~y}. This concept can be
extended to representing entire regions R ⊂ Rm by using integration instead of
summation.

We write the SSP representation of a region R ⊂ Rm as S(R). However, note
that S is not unique. Each vector-component of the m-dimensional represented
space is encoded using a randomly chosen basis SSP vector (see Komer et al.,
2019 for more information).

To query whether ~x is represented within an SSP ~a = S(R), we can simply use
the cosine similarity between ~a and ~b = S({~x}). If 〈~a,~b〉 (assuming normalised ~a,
~b) is larger than a certain threshold, then R is likely to contain ~x. The “likely”
is necessary because of SSP periodicity; we discuss this in more detail in the
context of hexagonal SSPs below.

Voelker (2020) proves that the dot product between two SSPs representing
~x, ~y, respectively, is a product of “sinc functions”

E
[
〈S({~x}),S({~y})〉
‖~x‖‖~y‖

]
=

m∏
i=1

sinc(xi − yi) . (8)

This equation holds for m′ →∞, and the expectation value is over all possible
SSP bases. The “sinc” function is defined as

sinc(ξ) =

{
sin(πξ)
πξ if ξ 6= 0 ,

1 if ξ = 0 .
(Sinc)

Equation (8) is depicted in Figure 5A for a two-dimensional represented quantity.

5.1 Comparison between the SSP similarity and RBFs
Crucially, the SSP similarity can be interpreted as the activity of a single neuron
within a neural network, just as we interpret a single RBF as the activity of an
artificial neuron. Both RBFs and the SSP similarity can be used to construct
sparse representations. Indeed, considering an RBF with ϕ(ξ) = sinc(ξ) and
Eucledian d results in a response curve that superficially is similar to the SSP
similarity (cf. fig. 5B). In particular, both nonlinearities feature a circular “bump”
where ~x ≈ ~µ, and for axis-aligned ~x (i.e., ~x is a scaled version of one of the basis
vectors), the sinc-RBF activities and the SSP similarity are equivalent.

Still, using the SSP similarity has two potential benefits over RBFs. First,
individual neurons are able to represent arbitrary regions in space. Second,
once all vectors have been encoded as SSP representations, computing the SSP
similarity is merely a matter of computing a simple dot product.
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Figure 5: SSP cosine similarity compared to a sinc-RBF. (A) Similarity between
two SSP vectors representing a two-dimensional quantity. (B) Activity of an
RBF with sinc-nonlinearity and Euclidean metric. (C) Cross sections along
the diagonal and x-axis, as highlighted in the previous two sub-figures. The
defining property of the RBF is that both cross-sections are exactly the same
when plotted over the underlying distance metric. This is not the case with
the SSP similarity. Note the attenuation and the increase in frequency in the
diagonal cross-section of the SSP similarity compared to the sinc-RBF.

Upon closer inspection however, it should be pointed out that there are stark
qualitative differences between the RBF similarity and SSPs. Most importantly,
the product of sinc functions is not rotation symmetric for arbitrary angles. Of
course, changing the covariance matrix Σ in the Mahalanobis distance or using
a metric other than L2, such as L1 or L∞, would result in a pattern in fig. 5B
that is not circular (and thus equally not arbitrarily rotation symmetric), but
plotting the activity along cross-sections passing through ~µ over the distance
from the centre according to the underlying metric d would always result in the
same graph (cf. fig. 5C).

In fact, we claim that the SSP similarity cannot be expressed in the very
loose sense in which we defined RBFs in the introduction. That is, there exists
no function ϕ(ξ) : [0,∞) −→ R and no metric d(~x, ~y) : Rm×Rm −→ [0,∞) such
that ϕ(d(~x, ~y)) is equal to eq. (8). As it stands, we do not have a rigorous proof
for this. Intuitively however, consider eq. (8) for d = 2:

sin
(
π(x1 − y1)

)
π(x1 − y1)

sin
(
π(x2 − y2)

)
π(x2 − y2)

=
sin(∆1) sin(∆2)

∆1∆2
.

Of both d and ϕ, only d has information about the difference between the two
vector components, ∆1 and ∆2. There is no way to express sin(∆1) sin(∆2)
purely in terms of ∆1∆2. Hence, d must compute something akin to the product
of sines. However, such a function d would violate the triangle inequality and
cannot be a metric.

Still, given these theoretical discrepancies, it is uncertain whether there is a
practical difference in terms of computational power or convergence behaviour
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Figure 6: Hexagonal SSP similarity compared to an exponential RBF. See
fig. 5 for a more detailed description. Data in (A) are the mean over the SSP
similarity obtained for 100 random hexagonal SSP bases with m′ = 256.

between a neural network built with units computing a product-of-sinc SSP
similarity, and sinc-RBF networks. More research is needed in this direction.

5.2 Comparison between hexagonal SSPs and RBFs
A small point in favour of there being no practical difference between RBFs
and SSP similarities—at least when considering biological constraints on SSP
representations—are so-called hexagonal SSPs. To understand the purpose of
hexagonal SSPs, we first need to review what we mean when saying that SSPs
are “periodic”, as well as the concept of “grid cells”.

We mentioned above that SSPs are periodic (Komer, 2020, Section 3.2.3).
Mathematically, we can express this periodicity by stating that for every ε > 0
and every ~x ∈ Rm there exists a scalar |γ| > 1 such that ‖S({~x})−S({kγ~x})‖ < ε

k
for all k ∈ N\{0}.4 In other words, we cannot really distinguish between whether
an SSP represents a vector ~x or a multiple of that vector kγ~x. The period γ
depends on the ratio between m and m′, as well as the particular choice of SSP
basis vectors. For large m′ the period is typically large enough to be negligible.
If we deliberately set m′ to a small value, we can exploit periodicity to generate
what is known in the neuroscience literature as “grid cells”.

Grid cells are neurons that are tuned to the location of an animal within
an environment. They are active whenever the animal is located at a “grid
point”, where “grid” refers to a virtual tiling of the environment that is generated
by the animal’s brain. While different populations of grid cells are tuned to
scaled or shifted versions of that tiling, the tiling itself tends to follow an
hexagonal pattern, and such hexagonal patterns have been shown to be optimal

4This seemingly complicated formalisation is required since the ratio between two SSP basis
vector components can be irrational, in which case strict equality between S({~x}) and S({kγ~x})
does not hold. However, the distance between S({~x}) and S({kγ~x}) at most increases linearly
with k, hence the division by k on the right-hand-side of the inequality.
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for location representation (Mathis, Herz, and Stemmler, 2012). In contrast, the
grid generated by the periodicity of SSP representations is rectangular.

Komer (2020) (cf. Section 3.2.4) suggests a simple technique for encoding
two-dimensional vectors as SSP representations that results in the periodic
activity pattern to be hexagonal, matching the grid cell data. Crucially for the
point of this paper, when using this encoding, the “ripples” of the sinc function
are smoothed out. The mean hexagonal SSP similarity over 100 random bases is
depicted in fig. 6 in comparison to a exponential RBF with ϕ(ξ) = exp(−

√
2ξ).

Both functions look very similar, except for the hexagonal SSP similarity having
a slight “Mexican hat” shape (i.e., negative overshoot surrounding the central
“bump”).

To summarise, when using a biologically motivated variant of SSP encoding for
two-dimensional spaces, the SSP similarity and exponential RBFs are essentially
equivalent for all practical purposes. However, it should be noted that this
statement is very different from saying that SSP and RBF representations of a
vector space Rm are equivalent; they clearly are not, and the reader is directed
at Komer (2020) for comparisons between the two.
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