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Abstract. We describe the Learned Legendre Predictor (LLP), a new algorithm

for predicting function values at all points within a prediction horizon. The algorithm

distinguishes itself from prior work in this area by making continuous time predictions,

and by learning online. While we implement the algorithm using the Legendre

polynomials as a basis, we derive the algorithm for the class of generalized Fourier

coefficiens. For the purposes of demonstrating basic functionality we test the algorithm

on predicting observations from the Mackey-Glass function and the Lissajous function.

In this pure prediction setting we demonstrate performance comparable to off-line

trained baseline algorithms trained on a comparable volume of data.

1. Introduction

Multistep prediction of functions is the prediction of function values, f(·, t) over a set

of future time points, ⊆ [t, t+ θp]. Multistep prediction has applications in forecasting

including weather, control, and supply and demand modelling. Accurate predictions

allow users to take appropriate, domain-specific actions.

In this paper, we develop the Learned Legendre Predictor (LLP) algorithm, a

neural network learning algorithm that learns to make multistep predictions in an

efficient online manner. The general approach is to store the history that is needed

by the learning algorithm in a compressed format, and then directly use the compressed

representation to perform the weight updates. We provide a derivation of this algorithm

using generalized Fourier coefficients, but we instantiate the algorithm using Legendre

polynomials as a compressed representation; rather than representing some sampling

of the value over [t, t+ θp], we instead encode predicted values as the coefficients of

Legendre polynomials. Importantly, we use this same representation to encode not

just the output prediction, but the history the prediction is based on, the history of the
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activity of the neural network, and even the history of the output predictions themselves.

These last two histories allow the network to compare its previous predictions to the

current observed state, and determine what weight changes would have improved the

prediction. Crucially, the use of Legendre polynomials allows us to define a learning

rule where the learning happens at all points in time (in [t, t+ θp]) in parallel, using a

single learning rule, working entirely in the compressed state space.

We demonstrate that this algorithm can learn online by training it to predict a

number of delayed signals. For the purpose of demonstrating performance, we test the

algorithm on the Mackey-Glass function and the Lissajous function. More rigorous

testing of the algorithm’s performance is left to future work.

In order to learn multistep predictive models online, one must keep a history of

observations and predictions. In order to do so effectively we make use of the Legendre

Delay Network (LDN) [Voelker et al., 2019], which can optimally delay observations

from a linear system, and can be used an efficient memory of observations. An LDN is

a linear system ṁ(t) = Am(t) + Bc(t), where A and B are defined such that m is a

q-dimensional vector that represents a sliding window of the past history of c using the

Legendre polynomial basis space.

In the LLP, we use an LDN to collect the past history of any state information

that our prediction should be based on. In the case of predicting the future state of

a plant, this would include both the observed state of the plant and the control signal

sent to it. This information, compressed into Legendre polynomial coefficients by the

LDN, is then fed into a single-hidden-layer neural network. We use a Rectified Linear

Unit for the hidden layer response function, but any non-linearity could be used. The

input weights W and biases B are fixed, and the output weights D are initialized to zero

and updated using our online learning rule. The network’s outputs are the Legendre

polynomial coefficients that are the network’s current prediction of the future state of

the plant.

To generate the input weights W and the biases B, we initialize them randomly

so as to produce hidden layer activity where each neuron’s maximum value is in the

same range and the distribution of sparsity (i.e., the proportion of the input space for

which the neuron outputs a non-zero value) is uniform. This initialization has been used

extensively in the Neural Engineering Framework (NEF) [Eliasmith and Anderson, 2003,

Voelker et al., 2017] as a useful fixed representation across a wide variety of non-linear

functions.

2. Prior Work

Multi-step, or multi-horizon, prediction breaks down broadly into two approaches:

iterative (or autoregressive) and direct prediction methods [Chevillon, 2007]. The former

iteratively applies one-step predictions to construct future trajectories, while the latter

predict whole time series at once. In principle, iterative methods should be as good

or better than direct methods, however, if the iterative step is inaccurately modelled,
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then that error will be integrated, making a direct approach more favourable [Chevillon,

2007, Taieb and Atiya, 2015].

Autoregressive models are the prototypical multi-step prediction method [Winters,

1960, Box et al., 2015], however they have difficulty predicting non-linear signals. Non-

linear autoregressive models exist, e.g. [Leontaritis and Billings, 1985a,b, Chen and

Billings, 1989], and the adoption of deep learning methods has allowed exploration

of a wide variety of techniques. Recent neural network–based iterative methods use

recurrent neural networks, typically LSTMs, to summarize the historical observations

that are used to predict future observations.

The deep learning approach of Rangapuram et al. [2018] explicitly learns state

space models for probabilistic predictions about future states. Probabilistic prediction

techniques include predicting the parameters of distributions functions [Wang et al.,

2019, Salinas et al., 2020] or predicting a multinomial distribution over a quantized

representation of the observation space [Wen et al., 2017, Fan et al., 2019, Orozco et al.,

2018]. Quantized representations have the advantage of being distribution agnostic, and

can readily represent multi-modal distributions, but cannot predict continuous states.

Lim et al. [2020] replace engineered representations in Bayesian filtering with

learned components. This can mitigate the problems due to misspecified update models,

while gaining the benefits of Bayesian filtering frameworks, potentially yielding better

performance for iterative prediction.

Direct multi-step prediction does not feed predictions back to make future

predictions, but makes all predictions at once. Wen et al. [2017] predict future

observations using an LSTM, fed into a multilayer perceptron (MLP). Fan et al. [2019]

combine recurrent networks and attention for direct prediction, and decode the future

predictions from a bidirectional LSTM (BiLSTM).

Transformers [Vaswani et al., 2017] have had success in direct multi-step prediction

[Lim et al., 2019], however, transformers have a memory complexity penalty. Due to

attention mechanisms, the memory requirements of transformer models are functions of

the input sequence length. Beyond mainline efforts to reduce complexity mechanisms,

e.g. [Kitaev et al., 2019, Zaheer et al., 2021], sparse attention mechanisms have improved

memory requirements for multi-step time series prediction [Li et al., 2019, Zhou et al.,

2020].

Our algorithm distinguishes itself from past work in three ways. First, these

prediction methods assume some discrete time steps, whereas the LLP makes predictions

at all points in the window [t, t+θp]. In principle, LLP should also handle missing data or

irregular observations, as the update rule does not expect a particular update frequency,

although demonstrating this is left to future work.

Second, where some of the above algorithms reduce complexity through Quantile

Regression [Koenker and Bassett, 1978], we reduce complexity by constraining the

smoothness of the predicted data. Limiting the degree of the Legendre polynomial

representation limits how quickly the predicted signal can change, but it also reduces

the computational complexity of the learning algorithm while still predicting continuous



Learned Legendre Predictor 4

states. Third, while the preceding algorithms may be readily converted into an online

algorithm, the LLP is designed specifically as an online learning algorithm.

3. Method

To demonstrate our on-line prediction algorithm we use it to learn to predict functions in

isolation, as described in Section 3.5. We briefly review Generalized Fourier Coefficients

in Section 3.1. LDNs, a key element of the algorithm are described in Section 3.2,

and the algorithm itself is described in Section 3.3. Readers seeking a more detailed

discussion are referred to Stöckel [2021].

3.1. Generalized Fourier Coefficients

Fourier series are a representation of time-varying functions composed out of a

summation of sinusoidal functions.

f(x) ≈ a0

2
+

n∑
i=1

ai cos

(
2π

P
nx

)
+ bi sin

(
2π

P
nx

)
(1)

This concept can be generalized to orthogonal square-integrable function bases,

provided a set of basis functions

Φ = {φn : [a, b]→ Y}∞n=0 (2)

where [a, b] is the restricted domain of the basis functions1 and Y is the set containing

the outputs of the function, which may be the real (R) or complex (C) numbers. The

bases do not need to be strictly orthogonal, but can be orthogonal with respect to a

weighting function w(·):

〈φi, φj〉w =

∫ b

a

φi(τ)φj(τ)w(τ)dτ = 0 ∀ 0 ≤ i, j ≤ n, i 6= j (3)

Using this set of basis functions we can approximate a function:

f(x) ≈
n∑
i=0

aiφn(x) (4)

with the coefficients ai defined as

ai =
〈f, φi〉w
‖φi‖2

w

(5)

There are a number of different functions that can provide a basis for function

approximation. However, in this work we will be focusing on the Legendre polynomials,

as they have a demonstrated relationship with time cells [Voelker et al., 2019]. In this

work we will restrict ourselves to approximating real-valued functions.

1 The typical definition of Generalized Fourier series defines the basis functions to be defined on the

domain [a, b], but WLOG, we rescale it to the domain [0, 1].
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3.2. Legendre Polynomials and the Legendre Delay Network

The Legendre Delay Network [LDN; Voelker et al., 2019] is a recurrent neural network

that was designed to produce as its output its input from θ seconds ago. The transfer

function of such a network, in the Laplace domain, is e−sθ. A perfect delay is not

physically realizable. However, it can be approximated using as a rational function of

two polynomials, which, in turn, can be implemented as a dynamical system.

In this work we use properties of Legendre polynomial representations of time

varying-functions, and the Legendre Delay Network (LDN) [Voelker et al., 2019] to

encode history. Legendre polynomials are orthogonal basis functions that can be used

to represent functions over fixed input windows. We use the shifted Legendre basis

polynomials, defined by the functions P0(t) = 1, P1(t) = 2t − 1, and the recursion

(n + 1)Pn+1(t) = (2n + 1)tPn(t) − nPn−1(t). The polynomials are defined over the

domain [0, 1], and the coefficients of the Legendre representation of a function f(t) over

a window [t, t+ θ] are an = 2n+1
2

∫ t+θ
t

f(τ)Pn((τ − t)/θ)dτ . A representation using the

first q polynomials is said to have an order of q. In this work we exploit the orthogonality

of the Legendre polynomials, that is the
∫ 1

0
Pi(t)Pj(t)dt = 1

2i+1
when i = j and zero

otherwise.

The LDN is a dynamic system that approximates the Legendre polynomial

coefficients of an input signal over a sliding history window of length θ ∈ R+. The

coefficients are represented using the LDN’s memory state, m ∈ Rq, for an order

q Legendre representation. The memory state m is updated according to ṁ(t) =

Am(t) + Bu(t), where u(t) is the input signal. To effect a Legendre basis, A and

B are defined such that Aij = 2i+1
θ

{
−1 i < j

(−1)i−j+1 i ≥ j
, and Bi = (2i+1)(−1)i

θ
. The values

of A and B are fixed once θ and q are selected. For discrete-time applications we

approximate A and B with Ā = eA and B̄ = A−1(eA − I)B, using a zero-order hold

and dt = 1 [Stöckel, 2021, Chilkuri and Eliasmith, 2021].

Thus defined, we can use the LDN to represent the history of a variety of signals

required for prediction. This includes recent observations of the system, contextually

relevant predictors of those observations, and even the predictors past states when

making a prediction. We choose the LDN a) because of its high-performance in

representing time series and sequences [Voelker et al., 2019, Chilkuri and Eliasmith,

2021] and b) because LDNs have only two free parameters, the dimensionality of the

representation, q, and the length of history window, θ.

3.3. Derivation of the Online Learning Algorithm using Generalized Fourier

Coefficients

The objective of the learning algorithm is to predict, from a history of observations,

future observations, ẑ(t) ∈ Rm, over the time window [t, t+ θp], where θp ∈ R+. The

history consists of context vectors, c(t) = (z(t), u(t)), over the time window [t− θh, t],
consisting of plant observations, z(t), and issued commands u(t).
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We wish to predict the future observations as the coefficients of a generalized Fourier

series. Given a set of orthogonal basis functions, Φ = {φn : [0, 1]→ R}∞n=0. We can

represent the predicted function, ẑ(τ) =
∑qp

n=0 Ẑnφn(τ) on the domain [t, t+ θp], where

Ẑn =
1

‖φn‖2
w

∫ 1

0

φn(τ)z (t+ τθp)wn(τ)dτ

and w(τ) is the weighting function for the chosen function basis that ensures

orthonormality.

We wish to predict from recent history the generalized Fourier coefficients, Ẑ(t)
qp
m ,

written here as a qp ×m tensor using Einstein notation, based on some recent history,

represented as the state of the context LDN, C(t)qh,dc . We use a neural network with

a single hidden layer to predict the state, such that Ẑ(t)
qp
m = D

qpN
m a(t)N , where a(t)N

is the activity of a population of N neurons, and a(t)N = f(C(t)qh,dc). The weights

and biases for the neurons in f(·), are chosen randomly, using the techniques lade out

in the Neural Engineering Framework, described above, and are held constant during

learning. The only parameters to be learned are the decoding weights, D
qpN
m . To learn

these weights we employ the Delta rule [Widrow and Hoff, 1960].

If one were training the data in batch mode, operating for T seconds, and had a

sequence of observations
{

(c(tobs)
T , z(tobs)

T )T
}

for tobs ∈ [0, T ], then the update to the

decoder weights at the time the prediction is made, tpred ∈ [0, T − θp], is:

∆D(tpred)qpNm = −κa(tpred)N ×
∫ 1

0

(
ẑ (tpred + τθp)m − z (tpred + τθp)m

)
P (τ)qpW (τ)qpqpdτ

(6)

Where P (τ)qp = (φ0(τ), . . . , φqp(τ))T , is the vector of orthogonal bases2, and

W (τ)
qp
qp = diag

(
w(τ)
‖φ0‖2w

, . . . , w(τ)
‖φqp‖2w

)
is a diagonal matrix of the scale factors for computing

the generalized Fourier coefficients. The updated weight matrix after the most recent

observation is:

D(tobs) = D(0) +

∫ tobs−θp

0

∆D(t)dt (7)

which is a double integral over the time the prediction is made, tpred, and how far

into the future we are predicting observations, tobs. Unfortunately, Eq. (6) is acausal

with respect to the prediction time tpred, but this can be rectified by extracting the inner

integral, re-writing the integration, and using the Legendre representation:

D(tobs) = D(0) +

∫ 1

0

∫ tobs−τθp

τθp

−κa(t)×
(
Ẑ(t)P (τ)qp − z(t+ τθp)

)
P (τ)qW (τ)qqdtdτ

(8)

2 This derivation is completed relying on the basis functions’ orthogonality. However, when

implemented using basis function generating LTI systems, some approximation error will be

introducted. See §4.2 of [Stöckel, 2022].
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To figure out what the instantaneous update to the weight matrix would be, we

take the derivative of D(tobs) with respect to tobs. Using Leibniz’s rule we find

d

dT
[D(T )] =

∫ 1

0

− κa(T − τθp)×(
Ẑ(T − τθp)P (τ)qp − z(T − τθp + τθp

)
P (τ)qW (τ)qqdτ

(9)

We can rewrite the term z(T − τθp + τθp) such that only the current observation,

z(T ) is required. The term Ẑ(T − τθp)P (τ)q is the prediction made τθp seconds ago

about an observation τθp seconds into the future. This formulation updates the decoder

weights using only the current observation, z(t), but it depends on the history of the

neural population, a(t) and the predicted generalized Fourier coefficients, Ẑ(t). We can

represent these histories using two more sets of generalized Fourier coefficients, one for

the neural population activity, a(T − τθp) = A(T )NqaP (τ)qa , and one for the predicted

Legendre coefficients, Ẑ(T − τθp) = MẐ(T )P (τ)qẐ . To tidy up notation, we rename

the variable T as t. Because MẐ(t) ∈ RqẐ×qp×m and A(t) ∈ RN×qa are tensors, we also

rewrite the equation using Einstein notation. This lets us re-write the learning rule as:

d

dt

[
D(t)

qpm
N

]
=

∫ 1

0

− κA(t)N,qaP (τ)qa(
MẐ(t)mqqẐ P (τ)qẐP (τ)qp − z(t)m

)
P (τ)qSqqdτ

(10)

Where qa is the dimensionality of the Legendre representation of the neural

population activity, aẐ is the dimensionality of the Legendre representation of the history

of predicted observations, and qp is the dimensionality of Legendre representation of the

predicted observations. The variable q is the dimensionality that the error signal is

being projected into, and should be identical to qp. However, since κ, A(t)
qpm
N , MẐ(t)mqqẐ ,

and z(t)m are not functions of τ , they can be taken out of the integration, leaving us

with the expression

d

dt
[D(t)qmN ] = −κA(t)N,qa

(
MẐ(t)mqpqẐ

∫ 1

0

P (τ)qaP (τ)qẐP (τ)qpP (τ)qW (τ)qqdτ

−z(t)m
∫ 1

0

P (τ)qaP (τ)qW (τ)qqdτ

) (11)

Fortunately, the terms under the integral signs are only dependent on the choice

of the representation dimensions, and can be pre-computed before the algorithm is run.

We denote the first term Q
qaqẐq
qp =

∫ 1

0
P (τ)qaP (τ)qẐP (τ)qpP (τ)qW (τ)qqdτ and the second

term by S =
∫ 1

0
P (τ)qaP (τ)qW (τ)qqdτ . Regardless of the choice of generalized Fourier

basis functions, Q is a term that only depends on τ , and can be pre-computed. Should

P (τ)qa and P (τ)q correspond to the same orthogonal generalized Fourier basis functions,

and because the integral is scaled by the matrix W (τ)qq, S should evaluate to a qa × q
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submatrix of the identity matrix. In our case, we use the Legendre Polynomials as the

basis functions, and we re-write the learning rule as:

d

dt
[D(t)qmN ] = −κA(t)N,qa

(
MẐ(t)mqpqẐ

Q
qaqẐq
qp − z(t)mIqaq

)
(12)

The implementation of the LLP learning rule is given in Algorithm 1. The update

rule for the matrix D requires mqaqpq
2
Ẑ

+ NmqaqẐ floating point operations for each

update.

Algorithm 1 Learning Legendre Prediction - online learning for multistep prediction.

1: procedure LLP-init(m, θp, qp, N, r, κ, θc, qc, qz,∆t)

2: t← 0

3: Āc, B̄c ← LDN(θc, qc,∆t); C0 ← 0m×qc . Initialize LDN matrices and state

vectors.

4: ĀẐ , B̄Ẑ ← LDN(θp, qz,∆t); MẐ,0 ← 0m×qz

5: Āa, B̄a ← LDN(θp, qz,∆t); A0 ← 0N×qz

6: D ← 0N×m×qp . Initialize Weight Matrix

7: a(0),W,B ← nef ensemble(N, r) . Randomly initialize neural population.

8: Q←
∫ 1

0
P (τ)qaP (τ)qẐP (τ)qpP (τ)qSqqdτ . Precompute Q tensor

9: end procedure

10: procedure llp-update(c(t), z(t),∆t)

11: Ct ←
(
I + Āc

)
Ct−1 + B̄cc(t) . Update LDN states.

12: MẐ,t ←
(
I + ĀẐ

)
MẐ,t−1 + B̄ẐẐt

13: At ← (I + Āa)At−1 + B̄aa(t)

14: D ← D − κAt ×
(
MẐ,tQ− z(t)I

)
. Update weight matrix.

15: a(t)← f(WCt +B) . Predict Legendre coefficients.

16: Ẑt ← Da(t)

17: t← t+ ∆t

18: end procedure

3.4. Comparison to Näıve Implementation

An obvious implementation of an online learning rule would be to maintain a queue

of the last Np = θpωz neural population activities and predicted outputs, where ωz is

the sampling frequency of the observations, and then update the decoder matrix for

each new observation. Here we analyze the memory and time complexity of the LLP to

determine at what point it is more efficient than the näıve implmentation.

In the näıve implementation we require a queue of length Np to store copies of the

neural network activities, a(t) and the predicted outputs in Legendre space, Ẑ(t), for

each dimension, m. We also need to store the queue of observations, of m dimensions,

of length Np. This gives a total memory complexity of Np(Na +m(qp + 1)).
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For the LLP we require one LDN to keep track of the neural activities, which will

require a memory of Naqa. We will also require an LDN to keep track of the predicted

Legendre coefficients, mqpqẐ , where m is the dimensionality of the data, qp is the number

of Legendre coefficients used to represent the predictions, and qẐ is the dimensionality

of the LDN keeping a history of prior predicted Legendre coefficients, Ẑ(t). If we let

q = max {qp, qẐ , qa, q}, the LLP has preferable memory properties when:

mq2 +Naq < Np(Na +m(q + 1))

=⇒ mq2 +Naq −NaNp −mNpq −mNp < 0

=⇒ mq2 + (Na −mNp)q − (NaNp +mNp) < 0

=⇒ q2 + (Na/m−Np)q − (NaNp/m+Np) < 0

With equality being the threshold for dominance, we can consider the upper root

of the quadratic, which occurs at:

q =
−(Na/m−Np) +

√
(Na/m−Np)2 − 4(−NaNp/m−Np)

2

q =
Np −Na/m+

√
(Na/m+Np)2 + 4Np

2

We can look at the sensitivity of this criterion to the different model parameters,

to determine the maximum q where the LLP has better memory characteristics. Fig. 1

shows a sensitivity of q to the parameters, m,Np, and Na. We can see that this term is

domniated by the term Np.

The time complexity of the näıve implementation is the number of samples times the

cost of updating the weight matrix for each element in the history, Np×mNaqp. For the

LLP algorithm, the update rule is: ∆D(t)Nqrm = −κANa
qa (t)

(
M(t)

qp
mqQqaq

qpqrS
qr
qr−zm(t)δqaqr

)
.

To compute this we need to compute two tensor products, M(t)
qp
mq with the pre-

computed qa × q × qr tensor, Qqaq
qpqrS

qr
qr , and then ANa

qa (t) with the m × qa × qrqqp
output of the previous tensor product. This gives a computational complexity of

the LLP update rule of mqpqaqr + mNaqqqr. Our algorithm is more efficient when

mqpqaqrq + mNaqqqr < Np ×mNaqp. If we let q′ = max {q, qa, qr, qp}, then we can say

that our algorithm is more computationally efficient when q′3/Na + q′ < Np, or when

q′3/Na + q′−Np < 0, the crossover point occurring when the expression is equal to zero.

A plot of the maximum q′ permitted as a function of Na and Np is given in Fig. 2.

3.5. Experimental Setup

We test the LLP first in isolation, predicting two different time series (Section 3.5.1).
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Figure 1: The sensitivity of the maximum q before LLP loses memory dominance over

the näıve implementation. The plot shows the maximum value of q that can be used

before the näıve implementation has better memory performance. The solid line is the

average maximum q value and the shaded region is a 95% confidence interval. That

threshold is dominated by the number of observations into the future that were being

predicted, Np.

3.5.1. Function Prediction To test the LLP in isolation, we use it to predict the

Mackey-Glass equation[Mackey and Glass, 1977] and the Lissajous Curve[Bowditch,

1815]. The Mackey-Glass equations were developed to model the number of mature

blood cells in blood, although through different parameter settings have been used to

model a number of homeostatic processes. The function being predicted is a quantity

x(t), which is a function of the parameters β0, γ, n, and τ , has an initial condition

x(0) = 0.1, and is defined by Eq. (13).

x(t) =
β0x(t− τ)

1 + x(t− τ)n
− γx(t− τ) (13)

The Lissajous Curve is a system of parametric equations that can describe the

motion of a compound pendulum. The motion is described by the system of parametric

equations:

x1(t) = A sin(at+ δ) (14)

x2(t) = B cos(bt) (15)

In this experiment we set A,B = 1, and a = 5, b = 4, and δ = π
4
. For these two tests

the LLP parameters are: the context history window, θc = 0.3 sec; context Legendre

order qc = 20; learning rate κ = 5 × 10−5; readout point τ = 1; neural population size

N = 2000; prediction window length θp = 0.015; and the prediction Legendre order
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Figure 2: A contour plot of the maximum q before LLP loses time complexity dominance

over the näıve implementation. The numbers on the contour lines show the maximum

value of q for different values of the number of samples, Np, and the size of the neural

network, Na. By inspection, we see the algorithm is more sensitive to the number of

prediction samples than it is to the size of the prediction network.

qp = 20. We also set the Legendre order for the LDNs that track the network history –

a(t) and Ẑ(t) – to be equal to the prediction Legendre order, qp = qz.

3.6. Baseline Algorithms

We compared the LLP against a model trained offline, using 428k samples of the Mackey-

Glass and Lissajous datasets, with a 70, 20, 10% training, validation, and test split, for

one epoch. This split and limited epochs ensures the offline models are trained on as

much data as the LLP is exposed to during operations. As a baseline, we use an LSTM

model with 32 Hidden Units, a dense layer of 2000 ReLU neurons, and then a dense

output layer of θp
∆t
×m neurons. The network was trained with a batch size of 128, once

using the Adam optimizer, and again using Stochastic Gradient Descent with a learning

rate of 5× 10−5, the same learning rate the LLP used.

We also compared this to an off-line equivalent of the lds algorithm. We collected

training data, and extracted the Legendre coefficients of the context window, C =
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leg(x(t− θc), . . . ,x(t)), and for the prediction window, Z = leg(x(t), . . . ,x(t+ θp)). We

then trained a single hidden layer neural network with ReLU neurons, to predict the

future state, Z from the context, C. We then compute the Mean Absolute Error of the

predicted value, ẐP (1).

4. Results

The results of using LLP in isolation are shown for the Mackey-Glass dataset in Fig. 3

and the Lissajous curve in Fig. 4. In both graphs, the solid blue line is the average

over N = 30 trials (shaded regions represents a 95% confidence interval) of the sliding

window average (window size of 10k timesteps) of the LLP’s prediction error for the

15 time steps past the current observation. All networks were tested on the functions

starting from the same starting point, with variability due to weight initialization. The

horizontal dashed lines represent the testing error of the offline-trained LSTM baseline

models, for N = 30 randomly initialized networks, shaded regions represent a 95%

confidence interval.

For both the Mackey-Glass and the Lissajous functions, the LLP outperforms the

LSTM-SGD model. However, while the performance of LLP approaches the performance

of LSTM using the Adam optimizer, it does not achieve equivalence in the case of the

Mackey-Glass dataset.
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Figure 3: The prediction error of LLP vs time step. The dashed horizontal line gives

the test error of an LSTM model trained on the Mackey-Glass dataset.
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Figure 4: The prediction error of LLP vs time step. The dashed horizontal line gives the

test error of an LSTM model trained on the Lissajous function using SGD and Adam

optimizers.

5. Discussion

The results of these experiments demonstrate the ability of the algorithm to learn to

predict functions, online. When predicting the Mackey-Glass and Lissajous functions

the LLP learns online to predict the functions with an RMSE error that is better than

that of the LSTM-SGD model. These algorithms had the same learning rate, and so the

LSTM-SGD model may be disadvantaged by having more free parameters to optimize,

compared to the LLP. The performance of the LLP is inferior to the LSTM-Adam model,

although the performance of the LLP does tend towards that of the Adam-optimized

model. This motivates complementing the LLP learning rule with adaptive learning

rates and momentum. In either case, we may conclude that LLP is learning to predict

the function it is trained on, and that its performance is comparable to models trained

using standard offline methods, when exposed to similar volumes of data.

5.1. Selecting Algorithm Parameters

We do not address the question of how to select the parameters, the q’s and θ’s for the

different LDNs, as well as the dimensionality of the prediction network’s hidden layer,

Na. If the problem’s sampling rate, r, and the prediction window, θp, are fixed, and we

assume that the sampling rate is the Nyquist sampling rate, then we can set the order

Legendre of prediction coefficients, qp, and context networks, qc, qa, and qẐ , to be less
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than rθp, to achieve an acceptable level of reconstruction error. The order, q, can be

determined based on the frequency content of the signal, see Figure 12 of Stöckel [2021].

The choice of prediction window, θp, constrains the θ· parameters of the LDNs that store

the prediction network activity, a(t), and the coefficients of the predicted signal, Ẑ. If

one can otherwise bound the Nyquist frequency of the system, then the context and

prediction Legendre dimensionality can be selected, given a sampling frequency. The

choice of Na is hyperparameter to be optimized, as is the dimensionality of the LDNs

that store the hidden layer activity, a(t), and predictions, Ẑ. An interesting avenue of

future work is to modify the system structure online, either by expanding the structure

(larger q, larger Na) to improve prediction performance, or pruning the network to

improve efficiency.

5.2. Representing Multivariate Data

We have not explicitly addressed the problem of representing multivariate data, i.e.

m > 1. A multidimensional LDN is essentially equivalent to maintaining one LDN

per dimension, in the sense that there is no cross-talk between the input dimensions.

There is a question of how to most efficiently represent multivariate data, especially

when the desire is to represent and predict systems where there is higher-order (non-

linear) interactions between dimensions, like in the double pendulum. There is an open

question of whether this is the most efficient way to represent multivariate data.

For some desired prediction accuracy, there should be an LDN dimensionality that

captures sufficient information to reconstruct the signal. Appealing to the universal

approximation theorem, then given that LDN representation and some single hidden

layer neural network, we should be able to predict the system to some desired accuracy.

Take, for example, the system ẋ1 = x1(t)+x1(t)x2(t)+x2(t). If x1(t) and x2(t) have

bandwidth B, then ẋ has a bandwidth 2B. If we were to represent the term x1(t)x2(t)

separately, we would need twice the LDN dimensionality to achieve the Nyquist sampling

frequency compared to just x1 and x2 alone. If the product term is not represented

separately, then the prediction network must perform the multiplication, making the

prediction a harder problem. So there must be some trade-off between the complexity

of the LDN representation and the complexity of the prediction network.

If we were to add second-order orthogonal polynomials to the basis set, we would

make the problem easier for the prediction network, but at the cost of increasing the

complexity of the recurrent context network.

Additionally, we may have some pre-processing stage where variables can be mixed

into signals that can be represented independently. It may be more efficient to pass

observable variables through a transformation, e.g. ICA, or the hidden state of some

neural network, before passing it into the context LDN. What the right architecture is

for this network requires additional exploration, although we observe that in the non-

neural case it should be easy to propagate a gradient back through an LDN to learning

a pre-network encoding stage.
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6. CONCLUSIONS

We have described an online algorithm for learning multi-step prediction of continuous

states, over a continuous time window. We have used this algorithm as an isolated

predictor with observation latency. Future work involves using this algorithm to predict

systems for control, both feedback and model predictive applications.
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