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Abstract

Distributed vector representations are a key bridging point be-
tween connectionist and symbolic representations of cogni-
tion. It is unclear how uncertainty should be modelled in sys-
tems using such representations. One may place vector-valued
distributions over vector representations, although that may as-
sign non-zero probabilities to vector symbols that cannot oc-
cur. In this paper we discuss how bundles of symbols in Vector
Symbolic Architectures (VSAs) can be understood as defin-
ing an object that has a relationship to a probability distribu-
tion, and how statements in VSAs can be understood as being
analogous to probabilistic statements. We sketch novel designs
for networks that compute entropy and mutual information of
VSA-represented distributions. In this paper we restrict our-
selves to operators proposed for Holographic Reduced Rep-
resentations, and representing real-valued data. However, we
suggest that the methods presented in this paper should trans-
late to any VSA where the dot product between fractionally
bound symbols induces a valid kernel.

Keywords: Vector Symbolic Architecture; Fractional Bind-
ing; kernel estimation

Introduction
Vector Symbolic Architectures (VSAs) bridge connectionist
and symbolic representations of cognition, but it is unclear
how probability should be modelled using VSAs. We sug-
gest that VSAs already model probability and we show that
if the similarity function between fractionally bound quanti-
ties induces a (quasi-)kernel function, then VSA statements
on bundles of vector symbols are analogous to probabilis-
tic statements. While we restrict ourselves to the operators
proposed for Holographic Reduced Representations (HRRs;
Plate, 2003), and in particular their use in the Semantic
Pointer Architecture (SPA; Eliasmith, 2013), we infer that the
presented results translate to VSAs where similarity induces
a meaningful kernel or quasi-kernel functions of the encoded
data points, and where similarity distributes over bundling.

Prior approaches use populations of spiking neurons to pre-
dict vector representations of probability functions (e.g, Ma
et al., 2008; Sharma et al., 2017; Sharma, 2018). Here in-
dividual neurons represent bins around sample points in the
domain of a probability distribution and their activity corre-
sponds to the probability mass in that bin. Eliasmith (2013,
§7.4) illustrates how the cortical-basal ganglia-thalamus loop
can effect Bayesian inference (as has Bogacz (2015)) and fur-
ther, how to update distributions using HRR operations. In
this paper, we go further and provide explicit VSA operations

for computing operations on probability distributions – how
to marginalize a distribution, how to compute entropy, and
how to compute the mutual information between two random
variables.

Another approach to representing probability in spiking
neurons is to treat the spiking activity as samples from a
distribution with a one-to-one mapping between neurons and
random variables (Buesing et al., 2011; Pecevski et al., 2011).
By integrating neural activity one can extract samples from
the probability distribution encoded in the network, akin to a
classification neural network with a softmax output layer.

It is implicit in the methods discussed in this paper that
we can construct neural networks where the activity of a neu-
ron corresponds to a bin around one value or a multi-modal
distribution over multiple values. Recognizing the connec-
tion between VSA statements and probability-like statements
provides a great deal of flexibility when designing networks
to compute probabilistic inference, and also to interpret cog-
nitive models in a quasi-probabilistic manner.

First we review concepts that are necessary to build the
connection between VSAs and kernel density estimators.
Next we draw the analogies between VSA operations and
probability statements. The remainder of the document dis-
cusses information theoretic quantities that may be calculated
by neural networks, including novel circuits for computing
entropy and mutual information using HRRs, and discusses
implications of using the SPA to model probability.

Preliminaries
In this section we review the concepts that make the connec-
tion between VSAs and kernel density estimators. First, we
briefly discuss Kernel Density Estimators (KDEs) and how
RFFs have been used to improve the memory and time com-
plexity of these systems. Next, we briefly review VSA oper-
ations, grounded in the use case of the SPA.

Kernel Density Estimators and Random Fourier
Features
Kernel Density Estimators (KDEs) estimate the probability of
a query point x based on the average of its similarity to mem-
bers of a dataset of n observations D = {x1, . . . ,xn}. Similar-
ity is measured using kernel functions, k(·, ·), which are typ-
ically valid density functions. KDEs are defined P(X = x) =
1

nh ∑
n
i=1 kh (x,xi) for kernel bandwidth h ∈ R+. A problem



with KDEs is the memory required to maintain the dataset,
D , which can grow without bound, as does the time to com-
pute a query. Rahimi et al. (2007) addressed this problem
for KDEs and other kernel machines with the introduction of
Random Fourier Features (RFFs).

RFFs project data into vectors so that the dot product
between two vectors approximates a kernel function, i.e.
k(x,y)≈ φ(x) ·φ(y). The data projection is computed φ(x) =
(eiω1x, . . .eiωdx)T , where the frequency components ωi are
i.i.d samples from some probability distribution G(ω). The
choice of G(ω) determines the kernel induced by the dot
product1, and as d→ ∞ the kernel approximation is exact.

With RFFs, linear methods can approximate nonlinear ker-
nel methods. Kernels that can be approximated with RFFs of
dimensionality d < n improve the memory and time complex-
ity of querying a KDE from linear in the number of samples
(n) to linear in the feature representation dimensionality (d).
We can see the memory benefits by applying the kernel ap-
proximation to the definition of a KDE:

P(X = x) =
1

nh

n

∑
i=1

φ

( x
h

)
·φ
(xi

h

)
Because the dot product distributes over the summation, we
can rewrite it as:

P(X = x) = φ

( x
h

)
· 1

nh

n

∑
i=1

φ

(xi

h

)
For a fixed dataset, the term 1

nh ∑
n
i=1 φ

( xi
h

)
is a vector, making

the complexity of querying the KDE O(d), instead of O(n).
The EXPoSE algorithm (Schneider, Ertel, & Ramos, 2016;
Schneider, 2017), for example, uses RFFs for fast anomaly
detection in large datastreams in finite memory. Fourier fea-
tures have also been applied to Gaussian Process Regression
(Rahimi et al., 2007; Mutnỳ & Krause, 2019). As we will dis-
cuss next, there is a connection between RFFs and the gener-
ation of random vectors used in fractional binding in VSAs.

Vector Symbolic Architectures
VSAs represent symbols as vectors, and provide operators
for acting on those symbol vectors. The symbols can repre-
sent discrete concepts, like integers or other atomic symbols,
real-valued quantities, and even data structures (Eliasmith,
2013; Voelker et al., 2021; Kleyko et al., 2021). We focus
on a special type of vector symbol called a Spatial Semantic
Pointer (SSP; Komer, 2020). Algorithm 1 is one possible al-
gorithm for generating new vector symbols, called every time
a new vector symbol is needed. There are two choices that can
be made in this procedure: the distribution used for generat-
ing the frequency components, θi, j; and the dimensionality of
the vector, d. Like with RFFs, different generating functions
for the frequency components induces different kernel func-
tions (Frady et al., 2021), and can provide improvements in

1Depending on the desired kernel, there are more accurate en-
codings, see Sutherland and Schneider (2015)

the efficiency of the representation, (Komer, 2020; Dumont
& Eliasmith, 2020), but we will use a uniform distribution
over the frequency components. This leaves the choice of di-
mensionality as a choice constrained by application specific
needs.

Algorithm 1 An algorithm for generating vector symbols to
encode m-dimensional data. U(·, ·) is the uniform distribu-
tion and F −1 indicates the inverse Fourier transform.

function GENERATE VECTOR(d, m)
ΘX = (θX , j,k) ∈ Rd×m s.t.θX , j,k ∼U(−π,π)
X← F −1

{
eiΘX

}
return X

Vectors generated by Algorithm 1 are both unit vectors
and unitary vectors, meaning that the magnitude of all fre-
quency components is 1. This property has two benefits:
repeated convolution preserves the vector’s magnitude; and
the dot product is preserved up to scale between the Fourier
and time domains. That is, for two vector symbols, X1,X2,
it is the case that wX1 · X2 = F {X1} · F {X2} for some
w ∈ R (Voelker, 2020).

With symbols defined we now turn to SPA operations. The
four operators used in this document are similarity, bundling,
binding, and unbinding. Similarity, ·, compares two vector
symbols. In the SPA similarity is the vector dot product. For
two vectors, x,y∈Rd , when x = y, x ·y should be 1, and when
x ̸= y, x · y≈ 0.

Bundling, also called collecting or superposition, denoted
+, combines two vectors into a new vector that maintains
some similarity with its constituent elements, i.e., x · (x+ y)
and y · (x + y) should both be relatively large. In the SPA
bundling is vector addition. Bundles of vectors can be un-
derstood as a set of the constituent symbols. Similarity dis-
tributes over bundling, x · (y+ z) = x · y+ x · z, meaning the
sum of similarity between a vector and all elements of a bun-
dle can be computed with one operation.

Binding, denoted ⊗, combines two vector symbols into
a new symbol that is dissimilar to either of the constituent
components, i.e. x · (x⊗ y) ≈ 0 and y · (x⊗ y) ≈ 0. We im-
plement binding with circular convolution2, denoted ⊛. We
will use ⊗ as notation except where we exploit properties of
circular convolution. Binding is the basis for representing
numbers. For integers, one generates a vector symbol, X,
referred to as an axis vector, and binds it with itself an in-
teger number of times (Komer, 2020; Dumont & Eliasmith,

2020). This is written Xn =
n
⊗

i=1
X, where n ∈ Z. Since SPA

binding is circular convolution, and convolution in the time
domain is multiplication in the Fourier domain, we can write
Xn = F −1

{
eiΘXn

}
. Binding can be applied to real-valued

numbers, called fractional binding, which we will use in this
paper extensively (Plate, 1995; Komer, 2020).

2The SPA admits other binding operators, e.g. the Vector-derived
transformation binding of Gosmann and Eliasmith (2019).



Unbinding, denoted ⊘, undoes, approximately, the bind-
ing operation. Given vector symbols, x,y ∈ Rd , and z =
x⊗ y, then x · (z⊘ y) ≈ 1 and y · (z⊘ x) ≈ 1. Unbinding in
the SPA can be implemented by binding with an “inverted”
vector. The pseudo-inverse of a vector x = (x1, . . . ,xd)

T is
x−1 = (x1,xd ,xd−1, . . . ,x2)

T . Thus we write unbinding as ei-
ther y≈ z⊘ x or y≈ z⊗ x−1.

With these operations, VSAs can produce models of cog-
nition that map onto populations of neurons, as well as
construct complex data structures and programs for neuro-
morphic hardware (Eliasmith, 2013; Kleyko et al., 2021).
Readers interested in other VSAs operators are referred to
(Gosmann & Eliasmith, 2019; Neubert et al., 2019; Schlegel
et al., 2020). In the following section we show how to inter-
pret VSA statements as density estimators.

Analogies to Probability Operations
In this section we show how operations in the SPA relate to
probability statements. Section 7.4 of (Eliasmith, 2013) out-
lines one (strict) relationship between operations on vector
symbols and probability distributions. We provide a differ-
ent interpretation of how to convert similarities into probabil-
ities. We assume a fixed dataset, D = {x1, . . . ,xn|xi ∈ Rm} of
n samples of m-dimensional data. We discuss how the VSA
operations discussed above imply probability statements.

Binding Encodes Data
Fractional binding projects data from some domain X ⊆ Rm,
into the vector representations of the SPA. Fractional bind-
ing is mathematically equivalent to the inverse Fourier trans-
form of data encoded with RFFs. As discussed in (Voelker,
2020), if our semantic pointers are unitary, the dot product is
preserved, up to scale. As with RFFs, the frequency compo-
nent distribution determines the kernel induced under similar-
ity (Sutherland & Schneider, 2015; Frady et al., 2021). In this
paper we use the uniform distribution over [−π,π] to generate
frequency components. We use a length scale parameter, h,
so when we write Xx/h we mean F −1

{
eiΘX x/h

}
, for x ∈ Rm.

In theory, data axes can have different generating distri-
butions for their axis vectors, as long as the generated vec-
tors remain unitary. However, when computing similarity it
is important to encode all data with the same axis vectors and
length scale parameter(s), h. It is beyond the scope of this pa-
per, but these elements may form a concept of a data type for
VSAs. We assume that for each data set the axis vectors will
be randomly generated once and we will denote data encoded
with those vectors and a particular length scale as Xx/h.

Similarity Computes Probability
The fundamental analogy we are drawing is between com-
puting probability with KDEs and measuring the similarity
of a query point with a bundle of fractionally bound vec-
tor symbols. We define our estimator as f̂ (x|D) = Xx/h ·
1

nh ∑xi∈D Xxi/h. For any domain space x ∈ X ⊆ Rm, we will
denote the normalized sum as MX ,n = 1

nh ∑xi∈D Xxi/h. If we

wish to highlight a subdivision of the elements in the vector
representation x we may denote the sum MX×Y,n.
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Figure 1: Fourier Integral Estimator, its approximation using
2048-d SSPs, and a KDE using a Gaussian kernel for 100
samples drawn from a GMM, indicated by the shaded region.

Using Algorithm 1 to generate axis vectors, the dot prod-
uct between two SSPs induces the normalized sinc func-
tion (Voelker, 2020), which is a quasi-kernel, as it takes on
negative values. Consequently, f̂ (x|D), is not a KDE, but
is the special-case Fourier Integral Estimator (FIE) (Davis,
1975, 1977). An optimal length scale, h, exists for the FIE
(Glad et al., 2007; Chacón et al., 2007), and can be estimated
by solving the equation ∥ϕn(1/h)∥= 1√

n+1
on 1/h ∈ [0,

√
n],

where ϕn(t) is the empirical characteristic function (Glad et
al., 2007), or by cross validation. Fig. 1 shows the perfor-
mance of a true FIE, and its approximation using a 2048-
dimensional SSP representation.

While the FIE is not a probability estimator, it can be con-
verted to one. Two techniques for doing so are due to Glad
et al. (Glad et al., 2007, 2003) and Agarwal et al. (2016).
Glad et al. (2003) developed corrections for different classes
of quasi-kernels. The particular correction for the FIE is:

fX (x)≈max
{

0, f̂FIE (x |D )−ξ
}

ξ ∈ R is selected so
∫

∞

−∞
max

{
0, f̂FIE (x |D )−ξ

}
dx = 1. If

we use our VSA implementation of the FIE, we can rewrite
the conversion as:

fX (x)≈max
{

0,Xx/h ·MX ,n−ξ

}
By inspection, this conversion is equivalent to a ReLU neu-
ron with a bias, b = −ξ, and either W = MX ,n or W = Xx/h

are the synaptic weights. Letting W = MX ,n frames popu-
lations of neurons as estimating the probability of a query
point, Xx/h, under different distributions, assuming a different
MX ,n for each neuron in the population. In this interpretation
populations of neurons can be understood as collections of
(inexact) density estimators, imprecision compounded by the



differences between ReLU and biological neurons’ transfer
functions. A population of neurons could be used as a boosted
version of a KDE. In the same way, each neuron could be un-
derstood to represent a distribution conditioned on a random
variable. On the other hand, if W = Xx/h then a population of
neurons could be sampling the domain of the probability dis-
tribution represented by MX ,n, similar to the technique used in
(Sharma et al., 2017). In the case where the memory, MX ,n,
contains only one encoded point, this network would be an
explicit probability code (Ma et al., 2008).

An alternative to the ReLU-style conversion is developed
by Agarwal et al. (2016). Here the FIE output is squared,
f (x) ≈ ∥φX (x;h) ·M′

X ,n∥2, using a modified version of our
standard memory term M

′
X ,n = ∑xi∈D ciXxi/h. The modifi-

cation requires solving for a set of weighting parameters,
ci. This technique is used by (Frady et al., 2021), to con-
struct KDEs using a VSA. We observe that conversion of
Agarwal et al. (2016) at least superficially resembles Born’s
rule for converting the quantum wave function into a proba-
bility (Born, 1926), hinting at a deeper connection between
models of cognition based on quantum theory (Pothos &
Busemeyer, 2013), as suggested by Stewart and Eliasmith
(2013).

Both conversions have parameters that must be solved for
and we do not comment on which method is preferable.
Agarwal et al. (2016) provides an efficient method for solving
for the weighting parameters, but it does require evaluating
the Gram matrix. Solving for Glad et al.’s ξ requires comput-
ing the integral of a non-linear function of a VSA estimator.
Regardless of the chosen conversion, the analogies to proba-
bility operations laid out in this paper hold. In this paper the

symbol
C
≈ indicates that operations on vector symbols are ap-

proximating a density, using one of the above conversions, C,
and indicate converted values by fX (x)≈C[Xx/h ·MX ,n].

Bundling Updates Beliefs
Updating a belief with observations is vector addition. If we
have a memory unit, Mn−1 = 1

(n−1)h ∑xi∈Dn−1 Xxi/h, then up-
dating the memory, and the distribution, is simply updating
the running mean Mn. To ensure the KDE stays normalized
by the number of samples we should write the update as:

MX ,n =
1

nh
Xxn/h +

n−1
n

MX ,n−1

If MX ,n, is represented by a population of neurons there is
a concern of saturating the activity of the population. If the
running average is computed exactly, then the length of MX ,n
should stay at 1, but computing the exact average requires an
unbounded representation for n.

There is an implementation concern of whether or not to
store the memory as a normalized or unnormalized sum. In
either case, if the desire is to operate with normalized quasi-
probabilities then there is a need to keep track of the length
scale, h, and the number of data points in the kernel estimator.
However, if an unnormalized MX ,n is being represented by a

population of neurons, there is the risk of saturating the ac-
tivity of the neurons. It has been suggested that the saturation
could act as a form of normalization (Eliasmith, 2013, §7.4).

Unbinding is Analogous to Conditioning
There are three ways to understand the unbinding operator
acting on fractionally bound representations. First, Xx/h ⊗
Yy/h⊘Yy′/h can be viewed as shifting the representation y′

units along the Y -axis. Committing to all query points be-
ing evaluated at y = 0 uncovers two other interpretations of
unbinding. The second interpretation of unbinding is cur-
rying the evaluation of a joint probability distribution, i.e.

g(X) = f (X ,Y = y)
C
≈ Xx/h⊗Y 0 ·∑xi,yi∈D Xxi/h⊗Y

yi−y
h . Fi-

nally, recognizing that f (X |Y = y) = 1
η

f (X ,Y = y), then the
unbinding operator can be understood as an unnormalized
conditioned distribution. Normalizing the conditional distri-
bution will require either memory or time, as we show below.

Encoding a 2-dimensional distribution with observations
D ⊆ X ×Y in the usual way, MXY,n = 1

nh ∑(xi,yi)∈D Xxi/h ⊛

Yyi/h. To condition MXY,n on an observation, Y = y, we un-
bind the value y from the sum, MXY,n, giving us:

MXY,n⊘Yy/h = ∑
(xi,yi)∈D

Xxi/h⊗Y
yi−y

h

Taking the dot product between a query point Xx/h⊗Yy′/h

and the unbound memory, MX |Y=y,n = MXY,n⊘Yy, then the
result should be:

Xx/h⊗Yy′/h ·MX |Y=y,n

= Xx/h⊗Yy′/h · ∑
(xi,yi)∈D

Xxi/h⊗Y(yi−y)/h

Setting y′ = 0 =⇒ Xx/h ⊗Y0 = Xx/h, meaning Xx/h ·(
MXY,n⊘Yy/h

)
is a valid similarity. The result is analogous

to the joint probability of the query point X = x with a fixed
Y = y. It can be converted to a kernel-smoothed estimate of
∑xi∈D Xxi/h near Y = y by a location-dependent normalizing
term (Wand & Jones, 1995). This requires keeping a separate
memory for the conditioning variables, as seen below. How-
ever, because the similarities can be negative, we may esti-
mate ± f (x|y). Thus we convert before normalizing, to effect
a conditional kernel density estimator (Rosenblatt, 1969)

f (X |Y = y)≈
C[Xx/h ·MX |Y=y,n]

C[Yy/h ·MY,n]

where MY,n = ∑xi,yi∈D Yyi/h. This adds a burden of maintain-
ing memory for every set of conditioning variables. Alterna-
tively, one could normalize by the sum of all possible values
of x, re-writing it as:

f (X |Y = y)≈ 1
η

C[Xx/h ·MX |Y=y,n]

where η =
∫

X C[Xx/h ·MX |Y=y,n]dx. This approach requires
the time and mechanisms to compute η. To demonstrate the



performance of the conditioned distribution we compare a 2D
Gaussian distribution with the analytical solution to condi-
tioning, and the quasi-distribution induced by unbinding.

We created a bundle of n = 5000 observations sampled
from the distribution (x y)T ∼ N

(
0,
[

1 0.5
0.5 1

])
. We com-

puted the solution to P(Y |X = x) for the conditioning values
x∈{−2,−1,0,1,2}, shown in the top row of Fig. 2, and com-
puted MY |X=x,n. The SSP-FIE estimated distribution is given
in the bottom row of Fig. 2. As with the 1D distribution, we
used a 2047-d SSP representation. The mean of the distribu-
tion was computed using Born’s rule and a normalizing con-
stant, η≈

∫
∞

−∞
∥Xx/h ·MX |Y,n∥2dx. This requires recomputing

the normalizing constant, as does the approach of Glad et al..
In either case, we assert that MY |X ,n contains information that
can approximate the conditional distribution.

Other Operations
To further expand on the above relationships we show how
some standard probability operations can be implemented us-
ing bundles of fractionally bound vector symbols. We explain
how to compute marginal distributions, entropy, and mutual
information, and sketch how to sample from this distribution
representation.

Marginalization produces a distribution over a subset of
variables U ⊂V from a distribution over the variables V . This
is conducted by integrating over the marginalized variables.
In math: fX (x) =

∫
Y fXY (x,y)dy. Using our analogy we can

re-write the marginalization process as

fX (x)
C
≈

∫
Y

Xx/h⊗Yy/h ·

(
∑

(xi,yi)∈D
Xxi/h⊗Yyi/h

)
dy

and since binding and the dot product distribute over addition:

fX (x)
C
≈
(

Xx/h⊗
∫

Y
Yy/hdy

)
·

(
∑

(xi,yi)∈D
Xxi/h⊗Yyi/h

)

Note that
∫

Y Yy/hdy is another vector, and can be approxi-
mated by sampling the space Y , or it can be computed directly
if the range of integration is finite. Denote ΦY =

∫
Y Yy/hdy,

then marginalization becomes fX (x)
C
≈
(
Xx/h⊗ΦY

)
·MXY,n.

Assuming that Xx/h,ΦY , and MXY,n are column vectors, not-
ing that convolution is commutative, and that circular con-
volution can be written as a matrix-vector product between
one argument and the circulant matrix, Circ(·), of the other
argument, we can make the following simplification:(

Xx/h⊗ΦY

)
·MXY,n =

(
Circ(ΦY )Xx/h

)T
MXY,n (1)

= Xx/h ·
(
Circ(ΦY )

T MXY,n
)

(2)

So there is a linear map that marginalizes MXY,n. The SSP
estimator and the true marginalized distribution of the multi-
variate distribution over (x y)T is shown in Fig. 3.

Sampling from a KDE is fairly easy: randomly select a
point in the dataset, then sample from the kernel function

centred at that point. Compressing data points into a vec-
tor prevents direct sampling, further, the similarity-induced
kernel is not a true kernel function. Rejection sampling could
work for sampling from MX ,n, but it requires logic for the ac-
ceptance/rejection of generated samples and a mechanism for
generating the initial random samples. Research into synap-
tic sampling (Elliott & Eliasmith, 2009; Buesing et al., 2011;
Kappel et al., 2015) and basal ganglia models (Stewart et al.,
2010) may provide some benefit.

Entropy (Ĥt ), a non-linear function of probability, can be
estimated online by sampling observations Xx/h ∼ G(MX ,n),
and updating a running average of their negative log probabil-
ity, Ĥt =

1
t

(
− log

(
C[Xx/h ·MX ,n]

))
+ t−1

t Ĥt−1. Representing
an unbounded number of observations, t, in a neural network
is challenging. Alternatives to an exact running average in-
clude low-pass filtering and computing entropy over a fixed
window of samples.

Entropy can also be estimated in one additional time step,
at the cost of memory. The single time step entropy com-
putation relies on recognizing that in the Glad’s conversion,
f (x) = max{0,Xx/h ·MX ,n− ξ}, either Xx/h or MX ,n can be
the synaptic weights of a neuron. For sample points, xs ∈ XS,
one can construct a neural network with a weight matrix, WS:

WS =

 | | |
Xx1/h Xx2/h · · · XxS/h

| | |

T

and output a(MX ,n) = max{0,WS ·MX ,n− ξ}. Then a(MX ,n)
is a vector of the probabilities of the samples XS. Approxi-
mate entropy can be computed Ĥ = 1

S ∑
S
i=1− log(ai(MX ,n)).

The negative log can be computed by a single layer neural
network, trained using transformation principle of the Neural
Engineering Framework (Eliasmith & Anderson, 2003).

Mutual Information is a useful tool in a number of appli-
cations, including action selection for information gain (e.g.,
Loredo, 2003; Krause et al., 2008; Arora et al., 2019). Shan-
non Mutual Information is defined E

[
log
(

fXY (X ,Y )
fX (X) fY (Y )

)]
. As

with entropy, mutual information can be computed by time-
averaged sampling, or by sampling the domain(s).

If X is a space of actions and Y is a space of observations,
mutual information can be used to guide action selection
by optimizing the objective x = argmax

x∈X
E
[
log
(

fXY (X ,Y )
fX (X) fY (Y )

)]
.

Rewriting the objective x = argmax E
[
log
(

f̂ (Y |X = x)
)]
−

E
[
log
(

f̂ (Y )
)]

shows we need two estimates. From our pre-
vious results we know we can rewrite f̂ (Y |X = x) = C[WY ·
MXY,n ⊘Xx/h], f̂ (Y ) = C[WY ·Circ(ΦX )

T MXY,n]. WY is the
weights of a neural network sampling the domain Y , as for
entropy. It should be possible to construct a neural network
that outputs the expected information gain of an action, Xx/h,
for MXY,n. Closing the loop should be possible using neu-
ral optimization techniques like the LCA optimization algo-
rithm (Rozell et al., 2008; Shapero et al., 2014).
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Figure 2: Conditioned distributions and their estimate from one sampling of 5000 observations. There is error between the
true, µ, and estimated means, µ̂, for each conditioned distribution, however, we see the estimated mean in all cases shifts in the
correct direction.
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Figure 3: The multivariate distribution marginalized over Y
and the SSP-FIE estimator using 5000 samples.

Discussion
There are two benefits of this framing of bundles of SSPs.
First, it lets us interpret SSP representations as probabilistic
statements. Second, it frames VSAs as a language for pro-
gramming neuromorphic hardware to compute probabilities,
possibly in constant time. However, there are some consider-
ations for this approach: The accuracy of kernel approxima-
tions induced by similarity may be further limited by hard-
ware, e.g., maximum firing rates, bit precision, and so on.

As well, a priori selection of the length scale, h, may not be
suitable for online operations. It is not immediately obvious
how to adjust h online, or how to implement that optimization
as a learning rule for a neural network. Similarly, the FIE to
KDE conversion parameters, Glad et al.’s bias term, ξ, and
the Born rule normalizing constant, must be modified for new
observations.

Working with non-normalized probabilities is possible, but
may saturate neural populations. Avoiding saturation requires
some form of forgetting, but what kind of forgetting is best
for an application, and what this implies for the probability
estimates, remains to be determined. A fixed discount factor
in the range ]0,1[, instead of computing the running average,
would produce exponential decay, inducing something like a
recency bias. Conversely, saturation could provide normal-
ization, as suggested by Eliasmith (2013).

We do not consider the neurological plausibility of inter-

preting SSP-probability statements as models of biology. If
one neuron can represent a probability distribution, why are
there so many neurons? It could be that neural populations
represent boosted estimates of the true density estimate, or
that more than one density is being represented, or that they
are compensating for the discrepancies between the transfer
functions of biological neurons and the ReLU function used
in the Glad-style transformation.

Furthermore, algorithms for optimizing hyperparameters,
and their implemented in neuromorphic hardware remain to
be determined. As well, the choice of particular kernels have
implications for biology (see Dumont & Eliasmith, 2020).
In this paper we restrict ourselves to one quasi-kernel, but it
should be possible to implement products of kernels, through
binding, and addition of kernels through the concatenation of
hypervectors. The search for network architectures that pro-
duce desirable kernels and probability statements is an open
challenge that could benefit from existing research in neural
architecture search. Further, we would like to explore mod-
elling the probabilities of mixed integer and real-valued data,
as well as more complex structured data, like those discussed
in (Eliasmith, 2013; Voelker et al., 2021; Frady et al., 2021).

Conclusion

In this paper we have illustrated a connection between repre-
sentations in the SPA and operations on probability distribu-
tions. Specifically, we have sketched novel methods for con-
ditioning distributions and computing entropy and mutual in-
formation using HRRs. VSAs have garnered interest for com-
bining symbolic and connectionist models of cognition, and
more recently as a programming framework for neuromor-
phic computers (e.g., Mundy, 2017). The results in this paper
show that VSAs can act like a probabilistic programming lan-
guage, and can build probabilistic models of cognition. Open
questions remain about best choices for implementation, and
the limitations of hardware, but the connection between ker-
nel methods and VSAs allows us to bring probabilistic mod-
els to cognitive modelling and neuromorphic computing.
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Mutnỳ, M., & Krause, A. (2019). Efficient high dimen-
sional bayesian optimization with additivity and quadrature
fourier features. Advances in Neural Information Process-
ing Systems 31, 9005–9016.

Neubert, P., Schubert, S., & Protzel, P. (2019). An intro-
duction to hyperdimensional computing for robotics. KI-
Künstliche Intelligenz, 33(4), 319–330.

Pecevski, D., Buesing, L., & Maass, W. (2011). Probabilis-
tic inference in general graphical models through sampling
in stochastic networks of spiking neurons. PLoS computa-
tional biology, 7(12), e1002294.

Plate, T. A. (1995). Holographic reduced representations.
IEEE Transactions on Neural networks, 6(3), 623–641.

Plate, T. A. (2003). Holographic reduced representation:
Distributed representation for cognitive structures.

Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum
probability provide a new direction for cognitive modeling?
Behavioral and brain sciences, 36(3), 255–274.

Rahimi, A., Recht, B., et al. (2007). Random features for
large-scale kernel machines. In Nips (Vol. 3, p. 5).

Rosenblatt, M. (1969). Conditional probability density and
regression estimators. Multivariate analysis II, 25, 31.

Rozell, C. J., Johnson, D. H., Baraniuk, R. G., & Olshausen,
B. A. (2008). Sparse coding via thresholding and local
competition in neural circuits. Neural computation, 20(10),
2526–2563.

Schlegel, K., Neubert, P., & Protzel, P. (2020). A com-
parison of vector symbolic architectures. arXiv preprint
arXiv:2001.11797.



Schneider, M. (2017). Expected similarity estimation for
large-scale anomaly detection (Unpublished doctoral dis-
sertation). Universität Ulm.

Schneider, M., Ertel, W., & Ramos, F. (2016). Expected
similarity estimation for large-scale batch and streaming
anomaly detection. Machine Learning, 105(3), 305–333.

Shapero, S., Zhu, M., Hasler, J., & Rozell, C. (2014). Opti-
mal sparse approximation with integrate and fire neurons.
International journal of neural systems, 24(05), 1440001.

Sharma, S. (2018). Neural plausibility of bayesian inference
(Unpublished master’s thesis). University of Waterloo.

Sharma, S., Voelker, A., & Eliasmith, C. (2017). A spiking
neural bayesian model of life span inference. In Cogsci.

Stewart, T. C., Choo, X., Eliasmith, C., et al. (2010). Dy-
namic behaviour of a spiking model of action selection in
the basal ganglia. In Proceedings of the 10th international

conference on cognitive modeling (pp. 235–40).
Stewart, T. C., & Eliasmith, C. (2013). Realistic neurons

can compute the operations needed by quantum probability
theory and other vector symbolic architectures. Behavioral
and Brain Sciences, 36(3), 307.

Sutherland, D. J., & Schneider, J. (2015). On the error of
random fourier features. arXiv preprint arXiv:1506.02785.

Voelker, A. R. (2020). A short letter on the dot prod-
uct between rotated fourier transforms. arXiv preprint
arXiv:2007.13462.

Voelker, A. R., Blouw, P., Choo, X., Dumont, N. S.-Y., Stew-
art, T. C., & Eliasmith, C. (2021). Simulating and pre-
dicting dynamical systems with spatial semantic pointers.
Neural Computation, 33(8), 2033–2067.

Wand, M. P., & Jones, M. (1995). Kernel smoothing (1st ed.
ed.). London ;: Chapman Hall.


