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Abstract

Recent developments in generative models have demon-
strated that with the right data set, techniques, computational
infrastructure, and network architectures, it is possible to gen-
erate seemingly intelligent outputs, without explicitly reckon-
ing with underlying cognitive processes. The ability to gen-
erate novel, plausible behaviour could be a boon to cogni-
tive modellers. However, insights for cognition are limited,
given that generative models’ blackbox nature does not pro-
vide readily interpretable hypotheses about underlying cogni-
tive mechanisms. On the other hand, cognitive architectures
make very strong hypotheses about the nature of cognition,
explicitly describing the subjects and processes of reasoning.
Unfortunately, the formal framings of cognitive architectures
can make it difficult to generate novel or creative outputs. We
propose to show that cognitive architectures that rely on cer-
tain Vector Symbolic Algebras (VSAs) are, in fact, naturally
understood as generative models. We discuss how memories
of VSA representations of data form distributions, which are
necessary for constructing distributions used in generative
models. Finally, we discuss the strengths, challenges, and fu-
ture directions for this line of work.

Introduction
Recent developments in generative models have demon-
strated that with the right data set, techniques, computa-
tional infrastructure, and network architectures, it is possi-
ble to learn distributions over complex data and processes,
like images, sound, and language (e.g., Ramesh et al. 2021;
Mittal et al. 2021; Ramesh et al. 2022; Brown et al. 2020;
Kojima et al. 2022). Samples drawn from these distributions
can generate seemingly intelligent outputs without explicitly
reckoning with underlying cognitive processes. The ability
to generate novel, plausible behaviour could be a boon to
cognitive modellers. However, the insights to cognition they
provide are limited, given that their blackbox nature does
not provide readily human interpretable hypotheses about
the representations and functional manipulations that gen-
erative models employ.

Cognitive architectures, on the other hand, make very
strong hypotheses about the nature of cognition in organ-
isms. Where generative models lack explicit statements
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about the underlying computation, cognitive architectures
are explicit about modularity, manipulated symbols, abstrac-
tions, and about the mechanism of reasoning (e.g., the com-
mon cognitive architecture; Laird, Lebiere, and Rosenbloom
2017), often explicitly codifying reasoning in rule-based
production systems (Anderson et al. 1995). Unfortunately,
the structural form adopted by many cognitive architectures
that is imposed by programming language abstractions can
make it difficult to generate novel outputs. Perturbations to
symbolic representations need to be sensitive to the specific
imposed structure, while in generative models, simple per-
turbations of locally smooth representations can result in
sensible outputs. The creativity of generative models and
the legibility of cognitive architectures are compelling rea-
sons to investigate a unification of these two approaches in
the hopes of generating hypotheses about cognition that can
embody both creativity and explainability.

Vector Symbolic Algebras (VSAs)1 may be able to bridge
this gap. VSAs are a family modelling frameworks that unify
symbolic and non-symbolic data (Smolensky et al. 2022),
and can be used to construct functional cognitive architec-
tures that can be translated directly into populations of neu-
rons, as in the case of SPAUN (Eliasmith et al. 2012). In
these frameworks data are represented as high-dimensional
vectors, and then manipulated using a defined set of oper-
ations. Representations of data structures can be composed
using the operators and existing data, and then manipulated
in order to conduct analogical reasoning, construct content-
addressable memories, or integrate with connectionist mod-
els, enabling learning.

Previous work has shown that certain VSAs can be used to
represent probability distributions (Joshi, Halseth, and Kan-
erva 2017; Frady et al. 2021; Furlong and Eliasmith 2022).
For the right choice of representation and operators, certain
VSAs have a mathematical relationship to probability, and
memories of these vector representations approximate dis-
tributions. We propose to show that cognitive architectures
that rely on these methods are, in fact, naturally understood
as generative models.

To support this argument, we first briefly outline the VSA
that we work in, and show how it relates to probability. Next,

1More commonly vector symbolic architectures, but we prefer
algebras to distinguish from cognitive architectures.



we discuss how representations of individual data points are
inherently distributions, via a relationship to kernel approx-
imations. Then we show how memories combine with rep-
resentations to construct distributions over input data. Given
the centrality of memory to cognitive architectures, the rela-
tionship between memory and distribution modelling makes
for a fundamental connection to generative models. Finally,
we discuss the implications of these results, how they relate
to modern generative models, challenges in using these par-
ticular representations, and outline avenues of future work.

Preliminaries
The connection between VSAs and probability is illus-
trated by considering Kernel Density Estmimators (KDEs).
In KDEs the estimated probability of a query point, x, is
the average similarity between x and the n elements of the
training set D = {x1, . . . ,xn}. Similarity is measured us-
ing a kernel function, k(·, ·), which is typically a valid prob-
ability density function. We define a KDE as fX(x) =
1
nh

∑n
i=1 kh (x,xi) for bandwidth h ∈ R+.

The memory resources of KDEs grow with the size of
the data set, D, as does the time to compute a query. This
efficiency can be improved by using the kernel trick –
representing a kernel function between two data points as
the dot product of two vector embeddings of those data
points (Rahimi, Recht et al. 2007). That is k(x,x′) ≈
ϕ(x) · ϕ(x′). With this trick we can rewrite the KDE as
fX(x) = ϕ(x/h) ·

(
1
nh

∑n
i=1 ϕ(xi)

)
, with the sum being

a vector that is fixed at training time.
Rahimi, Recht et al. (2007) demonstrated a method for

generating the embedding, ϕ(·), through randomly select-
ing frequency components from the power spectral density
of the kernel being approximated. VSAs have been said to
generalize the kernel trick (Frady et al. 2021), allowing one
to construct kernels over more complex data structures. Next
we briefly review the Holographic Reduced Representation
(HRR) VSA and the operators it uses to represent and ma-
nipulate data.

VSAs and Holographic Reduced Representations
VSAs are a family of algebras that can be used to imple-
ment cognitive models that can be translated into neural net-
works (Smolensky, Legendre, and Miyata 1992; Kanerva
1988, 2009; Plate 1995; Eliasmith 2013), a characteristic
that was employed by the Semantic Pointer Architecture
(SPA) in constructing SPAUN (Eliasmith et al. 2012), a cog-
nitive architecture implemented in spiking neurons. While
the SPA can be implemented using different algebras (Elia-
smith 2013), here we discuss probabilistic modelling using
the HRRs of Plate (1995), primarily focusing on representa-
tions of continuous data, using representations we refer to as
Spatial Semantic Pointers (SSPs) (Komer et al. 2019; Komer
2020; Dumont and Eliasmith 2020). Below we briefly de-
scribe the operations that we use from the HRR VSA and tie
them to representing probabilities.

Vector space We restrict ourselves to unitary vectors, vec-
tors whose Fourier components all have magnitude one. We

write this
v = F−1

{
eia
}

(1)

where a = (a1, . . . , ad)
T are a collection of frequencies,

ai ∈ [0, 2π], and d is the dimensionality of the vector. We
also enforce conjugate symmetry in the vector a to ensure
the inverse Fourier transform (F−1) is entirely real-valued.

The choice of a can be random, like the method of
Random Fourier Featuress (RFFs), or we can apply de-
signed representations to model observed biological phe-
nomena (Dumont and Eliasmith 2020). Ultimately, the
choice of frequency components shapes how the similarity
between represented data changes as the content of the data
changes. In this paper we do not consider optimal choices
of generating distributions, but we do observe that selecting
different distributions can result in more efficient represen-
tations, depending on the task at hand.

Operations: Binding, ⊛, implemented with circular con-
volution, is at the core of our approach — in VSAs, binding
is used to combine two symbols or state representations to-
gether to produce slot-filler pairs, e.g., combining a sensing
modality type with a sensor value, or an edge in a graph with
the edge’s traversal cost. In the context of probability, bind-
ing two vectors induces a kernel product.

We employ an extension of binding, called fractional
binding (Plate 1992; Komer et al. 2019), to represent data
in a continuous domain, X ⊆ Rm, into a high-dimensional
vector representation (eq. (2)).

ϕX(x/h) = F−1
{
eiAXx/h

}
(2)

Where x ∈ X and h is a length scale parameter, as in kernel
density estimation, and AX is the phase matrix, each col-
umn of which corresponds to an a vector selected for each
dimension of the input domain. AX and h define a “type”
representation in the high-dimensional space for the low-
dimensional space.

Similarity between two VSA-encoded objects is com-
puted with the vector dot product, ·. For SSPs similarity
has a strict mathematical meaning through the connection
to RFFs, the dot product between two SSPs approximates a
kernel function (Voelker 2020; Frady et al. 2021), expressed:

k(x,x′) ≈ ϕX(x/h) · ϕX(x
′/h). (3)

The kernel induced by the dot product will depend on the
choice of AX .

Bundling is used in VSAs to represent sets of objects.
Similarity between a vector and a bundle gives a measure of
membership in the set. We use bundles of fractionally-bound
objects to represent a distribution, and when we compute the
similarity between a query point encoded as an SSP with
a bundle of SSPs, we get a quantity that approximates the
probability of the query point. In math:

f̂(x | D) ≈ ϕX(x/h) ·
1

nh

∑
xi∈D

ϕX(xi/h) (4)

where we can replace the normalized sum
1
nh

∑
xi∈D ϕX(xi/h) with a memory vector that rep-

resents the dataset, MX,n. This memory can be updated



online, allowing for changes in the distribution that reflect
the experience of an agent. As will be discussed below,
the choice of AX may cause the induced kernel to take on
negative values, making it a quasi-probability. However,
conversions to probability are possible.

Unbinding is the inverse of binding, and is implemented
by binding with the pseudoinverse of the argument, ϕX(x)⊛
ϕY(y) ⊛ ϕ−1

Y (y) ≈ ϕX(x). In cognitive modelling, un-
binding can be used to select from bundles a subset where
the querying vector matches. We have found that unbind-
ing can be used to condition memory vectors, MXY =∑

(xi,yi)∈D ϕX(xi)⊛ ϕY(yi), selecting only those elements
where yi ≈ y, that is:

f(x | y,D) ∝ ϕX ·
(
MXY ⊛ ϕ−1

Y (y)
)
. (5)

In prior work we provided an in-depth treatment of proba-
bilistic modelling using SSPs (Furlong and Eliasmith 2022),
which permits us to construct distributions over vector
spaces. Here we suggest that it may be extended to mixed
discrete and continuous representations, although we do not
provide rigorous proofs to that end.

Cognitive Architectures Using Appropriate
VSAs are Generative Models

The argument we wish to put forward in this paper is that
cognitive architectures that are implemented using certain
classes of vector symbolic algebras are already inherently
generative. We draw this inference from two observations:
first, that data represented using vector symbolic architec-
tures induce (quasi-)kernels, and second that memories (typ-
ically vector sums) of these representations are vector ob-
jects that have a strong mathematical relationship to proba-
bility distributions.

HRR Representations Imply Kernel Functions
The vector dot product, the measure of similarity pro-
posed for analogical reasoning with symbolic represen-
tations (Plate 1993; Eliasmith and Thagard 2001), also
provides a meaningful measure of similarity between
continuous-valued data. Specifically, the dot product be-
tween real-valued vector data represented using SSPs is a
product of sinc functions (e.g., Komer et al. 2019; Voelker
2020; Dumont and Eliasmith 2020; Furlong, Stewart, and
Eliasmith 2022). That is to say, if we have a problem do-
main X ⊆ Rm and a projection ϕX : Rm → Rd, then for
two points x1,x2 ∈ X

ϕX (x1) · ϕX (x2) ≈
m∏
i=1

sinc(|x1,i − x2,i|). (6)

This relationship, given in the context of SSPs by Voelker
(2020), follows naturally from the theory of Random Fourier
Features (Rahimi, Recht et al. 2007). While it is not com-
monly used, the sinc function is admissible for use in kernel
methods for estimating probability (Tsybakov 2009).

Similarly, for representing symbolic data, the dot prod-
uct induces an admissible kernel. We represent atomic con-
cepts by randomly selecting points on the surface of an d-
dimensional hypersphere. The kernel function induced by
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Figure 1: Similarity between points (s, x) ∈ {s0, s1} × R,
and an origin point, (s0, x0) encoded as an HRR. Circles
indicate the similarity between the origin and points where
s = s0, triangles indicate s = s1. When the discrete compo-
nent is equal to the origin, the similarity over x follows the
normalized sinc function (solid line). Because sinc can take
on negative values it is a quasi-kernel, suggesting that these
representations induce quasi-probability models.

this representation is the cosine kernel. However, because
the points are randomly generated, the likelihood that two
vectors are close to each other is relatively low. In fact,
for two symbols in a set s1, s2 ∈ S, and a projection
ϕS : S → Rd, we can write the kernel function induced
by the dot product as

ϕS(si) · ϕS(sj) =

{
1 if si = sj
εij else

(7)

where ε is a random number with E[εij ] = 0 and
V ar(εij) = 1/d (Gosmann and Eliasmith 2016; Voelker,
Gosmann, and Stewart 2017). Hence, for arbitrarily large
vectors, the likelihood of high similarity becomes arbitrarily
small. Furthermore, if the number of symbols that will be
represented in the cognitive system is known a priori, then
one can select a dimensionality and develop a set of phase
vectors, (a1, . . . ,a∥S∥), such that the extreme values of εij
are minimized.

The above two results show that the dot product between
representations of atomic data – vectors of numbers or in-
dividual symbols – induce kernels that are admissible in
probabilistic models. However, it is also the case that by
using VSA operations like binding and bundling, we can
produce representations of greater complexity, suggesting
that such a formulation is not only a language for repre-
senting data in cognitive models, but also is a language
for composing kernel functions between these data. We ap-
peal to the notion that the product and sum of valid ker-
nel functions are themselves valid kernel functions (Bishop
2006, p296), and that bundling and binding operations rep-
resent sums and products of kernels, respectively. To illus-
trate this point, fig. 1 shows the similarity between mixed
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Figure 2: Similarities between 100 random trajectories. As
the mean L2 increases, the similarity decreases.

discrete-continuous points in the space {s0, s1} × R, en-
coded ϕ(s, x) = ϕS(s) ⊛ ϕX(x). When the symbolic ele-
ments are equal, we see the kernel follows the sinc function,
otherwise the similarity looks like noise. Figure 2 shows
the similarity for trajectories encoded using SSPs. We use
a modification of the standard method for representations of
trajectories using HRRs (Plate 1992; Voelker et al. 2021).

For a trajectory, τ = {(t1,x1), . . . , (tn,xn)}, we define
the projection into a vector space:

ϕ̃(τ) =

n∑
i=1

ϕ(ti)⊛ ϕX (xi/h). (8)

Which we normalize to be a unit vector, ϕ(τ) =

ϕ̃(τ)/∥ϕ̃(τ)∥. Note, that for this representation the induced
kernel should be of the form:

k(τ, τ ′) ∝
n∑

i=1

sinc(|ti−t′i|)
m∏
j=1

sinc(|xij−x′
ij |/h)+η (9)

where η is a noise term due to cross-talk. Since the trajecto-
ries we present here cover a two-dimensional space, we ap-
proximate the kernel as a function of the mean squared error,
ϵ, of the trajectories as sinc(k1ϵ/h)3+k2. This function will
not be a perfect fit, because the true kernel is a function of
the difference in x(t) at each time point, not the MSE of the
trajectories.

What follows from these observations is that when we en-
gage in analogical reasoning about data encoded using these
methods, we are also computing a value that has a mean-
ingful relationship to probability. What we show next is that
memories constructed from these representations are, inher-
ently, probability distributions.

VSA Memories are Distributions
When compared under the dot product, individual data
points are (quasi-)distributions in and of themselves. How-
ever, when we aggregate these data into memories we find

that they become objects that can represent data sets. We un-
derstand memories in the context of a VSA to be a weighted
superposition (bundle in the VSA terminology) of one or
more vectors encoding data.

In the most basic case, we can assume that we are given a
dataset, D of observations (x1, . . . ,xn) that are drawn from
some generating distribution. We create a memory by simply
averaging the VSA-encoded representation of these data

MD =
1

n

n∑
i=1

ϕ(xi). (10)

When one computes the dot product between a query point
ϕ(x) and the memory MD, we see that this approximates a
kernel density estimator:

ϕ(x) ·MD = ϕ(x) ·

(
1

n

n∑
i=1

ϕ(xi)

)
(11)

=
1

n

n∑
i=1

ϕ(x) · ϕ(xi) (12)

≈ 1

n

n∑
i=1

k(x,xi). (13)

Granted, because the induced kernels can take on nega-
tive values, similarities are not strictly probabilities. How-
ever, the sinc function, without correction, can be used in
density estimation (Davis 1977; Glad, Hjort, and Ushakov
2007), and can be a more efficient kernel than the “opti-
mal” Epanechnikov kernel (Tsybakov 2009, §1.3). However,
if strictly non-negative values are required one can employ
corrections like squaring the quantity (i.e., Born’s rule (Born
1926))

p(x) = (ϕ(x) ·MD)
2 (14)

or using the biased rectification,

p(x) = max {0, ϕ(x) ·MD − b} , (15)

of Glad, Hjort, and Ushakov (2003). Here, b is a bias selected
to ensure that

∫
X p(x)dx = 1. Most notably, this last correc-

tion takes on the form of a rectified linear neuron, leading to
the observation that while using VSAs can provide quasi-
probabilistic representations, neurons can transform quasi-
probability into exact probability.

With this memory representation and other VSA oper-
ations, one can manipulate the memory, like condition-
ing (through the unbinding operation) or marginalization
(through simple linear operations), and can construct net-
works to implement other information theoretic functions
over distributions (Furlong and Eliasmith 2022).

A valid criticism of the above approach is that it does not
take into account the fact that cognitive agents are embedded
in time, and must necessarily make observations, and hence
learn, sequentially. We can imagine a temporal memory that
is defined by the difference equation for a low-pass filter:

M(t) = (1− γ)ϕ(x(t)) + γM(t−∆t) (16)

where γ ∈ [0, 1[ is a temporal discount factor. This kind of
memory is sequentially updated, making it more plausible



for agents embedded in time, and since it uses a decay factor
instead of an average, it does not require knowledge of the
size of the entire data set ahead of time. Further, it gives a
distribution over observations that has a temporal aspect. At
any given time, T this system implies a memory defined as:

M(T ) = (1− γ)

T∑
t=0

γT−tϕ(x(t)). (17)

When we compute the probability of a given query point
with this new dynamical system, what we see is a kernel
density estimator with an exponential decay over time:

p(x) ≈ ϕ(x) ·M(T ) (18)

≈ (1− γ)

T∑
t=0

γT−tk(x,x(t)). (19)

The implication of this is that more recent observations are
considered more likely, and hence are more likely to be
drawn, should samples be taken from the distribution. This
structure, designed to increase the biological fidelity, intro-
duces a recency bias, a phenomena observed in humans that
cognitive models should explain.

We can also consider a single neuron attempting to
learn the distribution of the data. Taking inspiration
from Schölkopf et al. (2001), we trained the perceptron to
predict 1 for all input observations. We trained it for 1 epoch
with a learning rate set to 1/n, where n is the number of
samples in the dataset. This is a very contrived example, as it
assumes that the number of of samples are known, and there
is only one presentation of each data point. As the number
of epochs grows, this will eventually learn to approximate
a function that returns 1 if the sample has been part of the
training set, or 0 otherwise. This is consistent with the net-
work of Schölkopf et al. learning the support of the distribu-
tion, rather than the distribution itself.

Figure 3 shows the distribution learned by each of these
methods for constructing memories. We sampled 1000 ob-
servations from a one-dimensional bi-modal Gaussian mix-
ture model by sampling 700 observations from one mode,
300 from the other, and then randomly shuffling the obser-
vations. The atemporal memory described in eq. (10) pro-
vides a good match to the true underlying distribution. The
temporal memory, described in eq. (16) was provided with a
γ = 0.93. This value was selected to illustrate the how more
recent observations can influence the learned distribution.

The chosen temporal memory over-predicts the more re-
cent observations, forgetting earlier ones, however, it will
approximate the atemporal memory as γ → 1. After one
epoch, the perceptron learns a reasonable approximation of
the memory but requires a fine-tuned learning rate. With-
out engaging in a detailed exploration, we can conclude that
common formulations of memory can approximate observed
distributions, and the particular formulations have implica-
tions for the quality of the distribution that is learned, and
hence resulting behaviours.

Provided that a cognitive architecture uses VSAs that per-
mit a probabilistic interpretation, we can reframe the funda-
mental unit that such an architecture operates on as distribu-
tions. Consequently, when characterizing systems that work
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Figure 3: Distributions modelled with three different types
of memory: atemporal, temporal, and a perceptron trained to
predict membership in the dataset. Dots below the estimated
distributions represent the sample points used to generate the
memories, with the intensity of colour indicating the relative
time of the samples, with darker values being most recent.

on these representations, like populations of neurons repre-
senting recent memory, or the synaptic weights of neurons
learning distributions, they can be understood as learning
generative models, i.e., representations of the data’s distri-
bution. Further, if we consider the necessary limitations of
biological systems, we begin to see the effects of being em-
bedded in time that cause cognitive models to deviate from
optimal models.

Discussion
The vector algebra we used in this paper provides a way of
representing states that unify reasoning over symbolic and
non-symbolic data, neural implementations, and probabil-
ity models. This algebra can support the implementation of
various cognitive models, but importantly, by representing
memory as a superposition of high-dimensional vector rep-
resentations, we see that memories are equivalent to proba-
bility distributions. In the context of the standard model of
cognitive architectures, memories - working, episodic, and
procedural - are a primary object of concern.

Strengths
Unification of Cognitive Architectures, Generative Mod-
els, and Neural Networks VSAs provide a formal alge-
bra for implementing cognitive architectures that supports
instantiating cognitive scientists’ hypotheses about cogni-
tion, as documented by Eliasmith (2013) and Choo (2018).
At the same time VSA’s vector representations are read-
ily interfaced with neural networks, unifying connectionist
approaches with the symbolic (Smolensky, Legendre, and
Miyata 1992; Smolensky et al. 2022; Eliasmith 2013). Fur-
thermore, research using the SPA, shows that for any VSA
statement there exists at least one neural network that imple-
ments that statement. Finally, cognitive architectures using



appropriate VSAs that use either VSA memories or memo-
ries storied in synaptic weights learn distributions over their
experiences, a necessary component of generative models.
Using appropriate VSAs, one can construct a single model
that simultaneously proposes hypotheses about functional
cognition, brain activity and structure, and representations
of uncertainty.

Data structures define kernels Defining kernels for com-
plex data structures is a non-trivial problem, but HRR repre-
sentations provide a simple approach to this problem. Data
represented in this VSA support reasoning with analogical
similarity through the dot product, which can be converted to
a kernel function. Since every data structure implies a kernel,
humans can easily construct kernels simply by describing
the data they are representing. Ready access to kernels for
complex data makes it easier to build the distributions nec-
essary for generative models. Furthermore, because VSAs
provide an algebra for designing kernels, one could apply
techniques for kernel structure search (e.g., Duvenaud et al.
2013) to find representations that more readily explain hu-
man behaviour.

Integration with Machine Learning Techniques Fur-
thermore, probability distribution representations have
proven beneficial in machine learning applications. Because
VSAs generalize kernel embeddings, they can be used to im-
plement efficient algorithms for exploration (Furlong, Stew-
art, and Eliasmith 2022). We have also had success using
them as a representational basis for reinforcement learning
tasks, finding solutions with less variability than Deep Q
Networks on benchmark RL tasks (Bartlett et al. 2023).

Continuing in the vein of borrowing from machine learn-
ing literature – these representations are differentiable. Con-
sequently, gradient based methods can be applied and even
propagated through cognitive systems to learn improved
projections from perception or to motor activity in a task
constrained manner. Allowing that the biological plausibil-
ity of backpropagation is debatable, it is undeniably a useful
tool, and adopting these techniques permits their integration
into cognitive architectures.

Challenges
Resource-Accuracy Trade-Off High-dimensional repre-
sentations necessarily require large numbers of elements.
Representing these vectors in neural networks requires fur-
ther resources, as there is not necessarily a one-to-one cor-
respondence between vector dimensionality and the number
of neurons in the representing population.

High-dimensional vectors are preferred because randomly
selected vectors are only orthogonal in expectation – the
higher the dimensionality, the lower the variance of the dot
product between vectors. Algorithms can be defined opti-
mally in VSAs, but there is always the risk of cross-talk –
non-zero dot product values between different random vec-
tors. Because the vectors are necessarily finite dimensional,
the term εij in eq. (7) will always be non-zero for some
pairs of vector-symbols, although the magnitude is limited
by the dimensionality of the vectors. Consequently, there is
a drive to make vectors in VSAs to be as high dimensional

as possible. Unfortunately, increases in the dimensionality
of the vector come with an increase demand for resources
to represent these vectors. Work is on-going to find more
efficient representations. The Hexagonal SSP (Komer et al.
2019; Dumont and Eliasmith 2020), for example, often per-
mits using lower-dimensional representations compared to
purely random values. Additionally, work in using different
neuron models can reduce the size of the population required
to represent states (e.g., Frady and Sommer 2019; Orchard
and Jarvis 2023).

Conversely, the limiting of optimality due to finite rep-
resentations suggests hypotheses about bounded rationality.
Does the behaviour of a cognitive model converge to, and
then away from, human behaviour as a function of the repre-
sentation dimensionality? Choices of encoding schemes and
representational resources can produce behaviour that devi-
ates from optimal solutions, even while trying to solve prob-
lems formulated as optimization problems. Perhaps a short-
coming of VSAs, in terms of algorithmic performance, is a
benefit, in terms of understanding bounded rationality.

Online Hyperparameter Estimation An outstanding
problem that needs to be addressed is how to best fit
model hyperparameters. Using the Glad-style conversion
from quasi-probability to probability relies on a bias term
that needs to be fit to a given dataset. Solving for this term
exactly requires computing a non-linear integral over the en-
tire domain, X . If the conversion is to be learned sequen-
tially then the bias must be updated as well. Similarily, the
length scale parameter(s), h, is(are) dependent on the data
and needs to be fit to the dataset. If this parameter is to be
updated online, the encoding scheme and any learning rules
will need to change accordingly. Conversely, if one views
these parameters as being fixed after early development, one
may attempt to explain errors in judgement due to improper
fitting of hyperparameters.

Another consideration is that the bias parameter b, is an
artefact of the particular choice of conversion from quasi-
probability to probability. It may be that that conversion is
not the most biologically plausible, or that a conversion is
not necessary – the SPAUN model did not explicitly con-
vert similarity values to probability, but it still was able to
replicate observed data from the mammalian brain.

It is also worth considering the possibility that cognition
may be generative, but not strictly generative in the space of
probabilities defined by Kolmogorov’s axioms. Other mod-
els of quasi-probability, like quantum probability, violate
standard axioms of probability but are useful in describing
physical systems. Perhaps cognition also does not respect
formal definitions of probability, and conversions are unnec-
essary.

Future Research Directions
Automating Representation Design Good representa-
tions are fundamental to machine learning. To date, we work
primarily with hand-engineered representations for project-
ing data into the VSA vector space. Feature engineering in
the machine learning community was standard, until deep
learning demonstrated that learned features – given suffi-



cient data – can produce better results than hand-engineered
features. In a similar vein, we may ask if there are learned
representations, encoded as VSA expressions, that are supe-
rior to hand-engineered methods.

Higher-order representations are compositions of lower-
order VSA objects. More importantly, they can be un-
derstood as algebraic statements about their compositional
components. One can then frame the choice of encoding
as a problem of finding either an optimal or a satisfac-
tory representation for accomplishing particular tasks. One
might consider using structural search techniques that per-
mit probabilistic interpretations (e.g., Duvenaud et al. 2013;
Lake, Salakhutdinov, and Tenenbaum 2015) to find better
VSA statements for encoding data. Learning VSA represen-
tations would remove the limitations of human-engineered
features while preserving interpretability, as representations
would still be algebraic statements in the VSA. To take
this approach further into the neurally plausible domain,
one should consider the possibility of Bayesian structural
search (Kappel et al. 2015) as a mechanism for constructing
encoding networks for complex representations.

Efficient Sampling One major area of investigation is on
how to translate these probabilistic representations into ac-
tions – for cognitive models ultimately decisions have to be
translated into motor plans. This requires translating the dis-
tribution into specific actions that an agent can take, this is
the “generative” aspect of generative modeling. One could
imagine computing the average action specified by any par-
ticular distribution, but this would not perform well in the
case of bimodal distributions. An alternative would be to se-
lect actions by generating samples from the distribution.

A naive approach would be to sample a number of points
in the action, xs ∈ X , encode them, compute the proba-
bilities of the different actions and choose the maximum
(with tie breaking for multimodal distributions) or perhaps
perform Bayesian bootstrapping from these sample points.
This is a valid sampling approach, but as the dimensional-
ity of the action space increases, the memory requirements
grow exponentially.

Another approach would be to use a Markov Chain Monte
Carlo sampling approach, but here the VSA representation
can have a wrinkle that is not present in standard genera-
tive approaches. Current generative models operate in lo-
cally smooth latent spaces where any vector is a potentially
valid point in space, i.e., small perturbations of a Variational
Autoencoder (VAE)’s internal space or random vectors in a
Generative Adversarial Network (GAN) can all be decoded
to something potentially meaningful, even if of low prob-
ability or undesirable. This is not strictly the case for our
approach: our representations are locally smooth, but they
are not dense everywhere in Rd. For VSA representations,
and more specifically SSPs, valid points are only defined on
a subset of the hypersphere. Thus perturbations of any given
points can quickly move a representation off the manifold
that defines valid points, resulting in something that is either
(approximately) orthogonal, or is itself a weighted combi-
nation of VSA vectors, creating a new sampling problem.
Hence, the use of Langevin dynamics, unconstrained by the

manifold, may not result in meaningful samples. Cleanup
memories may help in these kind of sampling processes, but
they too require defining a codebook to cleanup against. This
is a fundamental trade-off of using VSA-style generative
models instead of more standard approaches – random sam-
pling becomes more challenging, but we retain interpretabil-
ity, in the sense that data can be analyzed structurally, using
the VSA algebra, and networks can be interrogated more for-
mally.

Other approaches, like normalizing flows, may result in
more efficient sampling techniques, particularly flows on
high-dimensional tori or spheres (e.g., Falorsi et al. 2019;
Rezende et al. 2020). Alternatively, one could elide sam-
pling altogether. In the context of an operating organism, one
could pose the problem of translating VSA-encoded distri-
butions over actions into specific motor plans as an RL prob-
lem, learning to decode the actions that are most valuable de-
pending on a state that is the distributions over actions. How-
ever, this is seems like an unusual formulation from a devel-
opmental perspective – learning to translate motor plans into
actions occurs after cognition has been developed.

Choice of VSA There are a number of different VSAs to
choose from, each with relevant strengths and weaknesses.
In this work we exclusively employed the HRR algebra de-
veloped by Plate (1995). While this work would translate
naturally to the Fourier Holographic Reduced Representa-
tion (FHRR) (circular vectors in Plate’s original terminol-
ogy (Plate 1995)), as they are linearly related through the
Discrete Fourier Transform, it may not be the case that ev-
ery VSA can be interpreted probabilistically. The choice of
operators and basis vectors imply different models.

For example, binding with the outer product (Smolensky,
Legendre, and Miyata 1992) or the vector-derived tensor
binding of Gosmann and Eliasmith (2019) can support rep-
resentation of integer data, but representing real-valued data
is non-obvious. Furthermore, when binding with the outer
product, the dimensionality of the representation grows as
larger values are represented. However, algebras equipped
with these binding operators can represent discrete distribu-
tions. While we do not engage in a full analysis here, fur-
ther investigation into what kinds of representations of un-
certainty are capable in other VSAs is warranted. Different
VSAs may be desirable for different theorists, and their abil-
ity to model probability can impact how of cognitive archi-
tectures may relate to generative models.

Deeper Connections to Modern Generative Models
One can possibly gain further benefit by merging this repre-
sentation with an IF-ELSE structure, via the mechanism of
heteroassociative memories. Production system-like formu-
lations have been integrated with VSAs previously, propos-
ing the Basal Ganglia as a model of rule-based action selec-
tion (Stewart and Eliasmith 2009; Stewart, Choo, and Elia-
smith 2010).

Heteroassociative memories, like the modern Hopfield
network (Krotov and Hopfield 2016), can take the form of a
single hidden layer neural network with an input weight ma-
trix, Win ∈ Rn×din , and an output weight matrix, Wout ∈
Rn×dout . It then transforms an input vector, z, to an output



vector, y:
y = WT

outf(Winz), (20)
where f(·) is the neuron activation function. If we permit
z = ϕX (x) to be a VSA encoded vector, and similarly allow
the rows of Win and Wout to be VSA vectors sampling the
input and output domains, then we can draw two important
inferences. First, we can consider the rows of Win as the
condition for an if statement in a production system, and
the rows of Wout can be the resultant actions, which due to
the quasi-probabilistic nature of the chosen VSA encoding,
can themselves be distributions over actions.

The second inference we can draw is that if the activation
functions of the network’s hidden layer perform a suitable
conversion to probability, the output vector, y represents a
distribution over outputs. The output vector y is a combina-
tion of distributions over actions, a in the action space, A:

ϕA(a) · y = ϕA(a) ·
∑
i

ϕA(ai)f(ϕX (xi) · x) (21)

≈
∑
i

p(Ai = a | X = xi)p(X = xi). (22)

The utility of this formulation is that it provides a simple
mechanism for integrating probabilistic rules. It also pro-
vides a distribution over actions that can be sampled from
in a generative way.

Integrating VSA representations with associative memo-
ries provides us a generative approach to implementing rules
systems, but the same network structure can be used to im-
plement an autoassociative, clean-up memory, as previously
implemented for VSA inputs by Stewart, Tang, and Elia-
smith (2011). These are two components that are fundamen-
tal to many cognitive architectures, which we can now un-
derstand to be inherently probabilistic.

But the benefit goes one step further: modern Hop-
field networks are intimately related to transformer net-
works (Ramsauer et al. 2020). Transformers have been
highly influential in generative modeling of sequences and
time series. That combining VSAs with associative mem-
ories produces a quasi-probabilistic network analogous to
structures that support state-of-the-art generative models
warrants further investigation.

Related Work
Considerable effort has been invested in developing frame-
works where symbolic representations can be combined
with probability distributions (see, e.g., the Sigma cognitive
architecture Rosenbloom, Demski, and Ustun 2016) or mod-
els of cognition that use probabilistic programming (e.g.,
Goodman, Tenenbaum, and Contributors 2016). While it
was not the original intent of these models, it remains no-
table that they lack an explanation for biologically plausible
implementations of the proposed models.

Similar concerns hold for quantum approaches to proba-
bilistic cognition (Pothos and Busemeyer 2013; Busemeyer,
Wang, and Shiffrin 2015; Pothos and Busemeyer 2022).
However, quantum probability is also a quasi-probability
model, in that it does not adhere to all of Kolmogorov’s
axioms of probability. Like the methods discussed above,

it relies on representing data as points in high- or infinite-
dimensional Hilbert spaces, using a set of operators on these
vectors to effect models of cognition, and relying on a trans-
formation (Born’s rule) to turn quasi-probabilities into prob-
abilities. It has been previously suggested that neural VSA
models could support the implementation of quantum prob-
ability models (Stewart and Eliasmith 2013). An alterna-
tive approach using neural oscillators was explored by Buse-
meyer, Fakhari, and Kvam (2017), which is reminiscent of
the FHRR approach to VSA modelling, although that tech-
nique is not explicitly considered. Regardless, the utility of
quantum probability in general does raise the question of
whether or not strict Kolmogorov probabilities are the best
framework for modelling cognition, or perhaps some other
method would be best suited.

More in the machine learning tradition, Kernel Proba-
bilistic Programming (KPP), surveyed in (Muandet et al.
2017), provides a framework for operating on distributions
represented as Kernel Mean Embeddings, equivalent to our
eq. (4). This approach assumes the existence of vector em-
beddings of continuous data, instead of constructing it from
iterated, fractional binding, and relies on the outer product
to represent variable binding, similar to Smolensky, Leg-
endre, and Miyata (1992) and quantum probability. As dis-
cussed above, the choice of circular convolution as a binding
function allows vector operations to preserve dimensional-
ity. Furthermore, with circular convolution, embedded val-
ues can be updated post-encoding. This fact enabled the im-
plementation of a VSA algorithm for simultaneous localiza-
tion and mapping (SLAM) using HRRs and spiking neu-
rons (Dumont, Orchard, and Eliasmith 2022; Dumont et al.
2023). These convergent lines of research show that there
is utility in pursuing operations on Hilbert space represen-
tations as a mechanism for encoding probabilistic computa-
tion.

Conclusion

VSAs are a tool that can be used to represent symbolic
reasoning while integrating with neural networks, and be-
ing inherently probabilistic. These representations have suc-
cessfully provided the functional description of the SPAUN
cognitive architecture. As described above, memories of
VSAs representations inherently learn distributions over in-
put, suggesting a connection between these formulations and
generative models. The centrality of memory to cognitive
architectures suggests that VSA implementations may be a
pathway to unifying generative models with cognitive archi-
tectures.
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