Introduction

B “Boltzmann’ invokes Stat Mech

m Ancestor is Hoptields Network

®m Dynamics in terms of MCMC

m [earning

Restricted Boltzmann Machines

— |

Example — Data Dimensionality Reduction

Boltzmann’s Machine

Won’t win any popularity contest anytime soon

NN (Neural Network) with intricate relationship to Stat Physics,
arose from Hopfield’s NN (Hinton and Sejnowski, 1983)

Locality of Learning Rule (Hebbianesque) + Generative Model
(unsupervised learning), therefore more biologically plausible
than back prop MLP

Feedback + Dynamics

Multiple Layers or “Deep” can be constructed using Restricted
Boltzmann’s Machine (RBM)

Hidden nodes and conditional inferencing via “Clamping”

Relatively Slow

s Network

Visualizing Hopfield’

Hopfield’s Network

Equivalent to Spin Glass model, It is 224
order energy network

Ising Model 1s a specific form of Hopfield’s /A
netWOfk Wlth Only local ﬁelgththOd P ,' , Trajectories
connections I/

N binary nodes:
Sl...Sn, Sf,, =0orl Wij :Wji, Wm =0
Weights are symmetrical, node can either be

0 or 1, network is fully connected, symmetry
allows for local decision during every updates

E=-) W;y;SiS;+) 60:S;

1<J)

Energy function:

Hopfield’s Net 1s an energy network, with
dynamics implemented via asynchronous
node activation, the dynamics makes it an
recurrent attractor network

An Attractor Network

Autoassociative/content addressable memory, categorization,
noise suppression (Eliasmith, 2007)

Dynamics: S, — { 1 > Wi;S;—6;>0

0 else

By Construction, each update reduces global energy E
AE; =) Wi;S; —6;
J

Fixed points in state/phase space are local minimums
Each update can be seen as gradient descent in axial direction

Often gets stuck in local min, but that’s what we want for auto-
assoclative memory, where each local minimum represent a
memoty!

Hopfield Learning

®m For N training data configurations, use gradient descent

Eiotal = i Ey, Er = — Z WiijSf
k=1 i<j
85{;:1 = —(5i5;)k
AW;; = a;;:l = 1(S:S;)% Same as Hebbian Learning Rule

What about Global Optimization?

B From optimization point |
of view, how do we find B =—5 > WiSS,
global min of i

B The “bias node” can be
eliminated assuming an
extra node which is
constantly on and
connects to all other
nodes with weights=bias

(Duda et al, 2001)

Annealing

Physical annealing (slow cooling) 1s an analogy from metallurgy,
for finding a low-energy configuration for systems of atoms of an
alloy or many magnets. The system is heated repeatedly during
cooling schedule, therefore allowing for configurations of higher
energy at certain times during the annealing schedule.

Simulated Annealing has 2 types:

1) gives the ability for escaping out of local minima, relationship to
oradient descent optimization (Kirkpatrick et al, 1983)

2) in the context of BM simulation and MCMC sampling. In this
case annealing leads faster to equilibrium and helps passage from

ridges of high energy (low probability) in state space (Neal, 1993)

Simulated Annealing (Type I)

Si npl e Si nul at ed Anneal i ng Pseudocode

/[/x 1s a state vector

[/t max 1s the max # of iteration

[/ T[1] 1s the annealing schedule, T[t nmax] = 0
[/ E(X) 1s the energy of state X,

//and the function trying to optim ze

vector<float> x = rand_init(x);
for (int 1 =0; I <t _max; ++i)
{

x1 = rand_perturb(x, rho);

I f (BE(x1) < E(x))

X = x1;
else if (exp(-(E(x1)-E(x))/T[1]) > rand(0, 1))
X = Xx1;

Simulated Annealing (Type I)

(Duda et al, 2001)

SA works well in the left energy landscape but not in the right energy

landscape

Simulated Annealing (Type II)

m Kirkpatrick et al. formulated SA as sampling from the canonical
distribution of a system at T=0, where probability is
concentrated at states with minimum energy, therefore an
optimization method.

®m For Probability Inference, want to sample from a canonical
distribution defined via an energy function that reproduces the

pdf when T=1. In this case, SA can be used for easier reach of
equilibrium. Such is the case with BM. (Ackley et al, 1985)

m .o If the state space of a certain distribution contains high
energy boundaries, convergence of MCMC sampling (Metropolis
or Gibbs) or reaching an thermodynamic equilibrium (Stat Mech
formulation) would take much longer.

What happens to a Distribution?

(Duda et al, 2001)

Boltzmann’s Machine

m Paradigm Shift — We want to model the statistics of the
input data

m This is known as a generative model: it is capable of
generating the same distribution as the training input
data on its own

m BM accomplish this by using probabilistic neurons

m Ela|p] easily computed via clamping!

A Boltzmann Machinist’s
Black Board

‘N"lﬂt 0 (Mﬂﬂ—

Boltzmann’s Machine

1
E— Z Wi;S;S;
05

Pr(v) = eXp_E(PY)/ r /Z(T) Boltzmann’s Distribution
Z(T) = Zexp—E(ﬁ)/T
G
P (Eqn—F
Py 7

v, 3 — Global Configuration States
Z(T') — Partition Function

Each global state has an associated energy and also a probability according
to the Boltzmann’s Distribution

Visualizing BM

:I _ _.' I::|_|:: _ _.' |

visible

(Duda et al, 2001)
Notice that the hidden units are now possible with BM, which allows for

* a richer representation of Pr — higher order regularities

* think of it as unsupervised feature extraction

* increases the capacity of the network (big problem for Hopfield’s Network ~.15d)

Stochastic Boltzmann’s Machine

m Update Rule (Stochastic, |
unlike Hopfields):

p.(+1)

1

Note: the probability of the i-th neuron firing is monotonically

increasing with its activation. Only possible due to the symmetric W

What the?

Well known NN are

Input->BI: ox->Output

(MLP for pattern recognition)

of

Noisy Data->Bl x->Memory Item
(Autoassociative Memory)

of

x->Bla x->1(X)

(RBF for regression)

of
x->Hncoding->Transformation->Decoding->{(x)

(NEE)

Where does binary neurons firing probabilistically fit into all this?

MCMC Gibbs Samplet!

m [t turns out the update rule for BM is simply a Gibbs Sampler for the distribution
defined by Py _
W) Priy) = expmEOVT (1)

m Gibbs Sampler (Geman and Geman, 1984) works well when the domain of the variables

are small and finite, or that the conditional distributions are parametric and easy to
sample from (Neal, 1993)

m Gibbs Sampler: replaces each component of a random vector with a value selected from
its distribution conditional on other components remaining the same

P(s; =41, s;:5 #1)
(Si:—l—l, Sjij#’i)—l—P(Si:—l, S]]#Z)

P(si=+1] {s;:j £ i}) =

—E./T
. . (&
P(Sz' — ‘|‘1‘ {Sj - J 7& Z}) — c—Eo/T 4 e—Es/T Note: This 1s also same as
The Metropolis with
. . 1 Boltzmann’s
P(Si = —|—1‘ {Sj N Z}) = 1 + e—(Bs—Ea)/T acceptance function

Example

Energy of various configurations

10 15 20
Boltzmann Distribution

10 15 20
Gibbs sampling n=10000

15 20
Configurations

Learning w/o Hidden Nodes

m [f the tull Pr(.) for entire configurations of all
nodes are known, then learning is easy

m | et the Pr(.) unclamped by the environment
(BM running freely) be: Pa Py =e™/"/z

0 In(P.) 0 o o 1 0 _E,/T

6w7;j — A4 8wz-j
1<) 8

oln(Py) 1, . . 3 e~ B/ T 1

8wij B T(SZ Sj) B A Tsi Sj

FY

Note: the second term is just

0iln(P;) 1 B
= T (S?S? N Z PW' 328;‘/) the probability of finding the ith
8

Ow; . .
“J and jth neuron on at same time

Learning w/ Hidden Nodes

m The previous equation and Hoptield’s learning rule are
inappropriate with the inclusion of hidden nodes, since
their states as well as probability distribution are
unknown

m The environment/teacher can only present the states

and the probability distribution of the visible nodes

m The difficult problem becomes learning how to use the
hidden nodes such that the visible nodes exhibits the
required probabilities

® Need to adapt all connection weights in the network
when given only the Pr distribution (or training
samples) over the visible nodes

Learning w/ Hidden Nodes

Minimize relative entropy of the environment clamped data and the model generated data
We also assume there are two phases phase + and phase -;

During phase +, the environment clamps a particular configuration over the visible nodes long
enough to reach thermo equilibrium

During phase -, the visible units are unclamped and the configurations are freely generated by the
network

PH(V2) .
D P P_ — Pr Va In a +ve; zero iff both
KL(‘ | Z P (Va) distributions are the same
|
aDK L — Z P (V) Vision Analogy
awzg (‘9ww

2.3 exp ™ Fes/T
_E. /T Marginalization over beta
Z S\ exp A/

B Oéﬁ
Eap = Z Wij5; Energy of a given
1<J

P~ (V) :ZP— (Vo A Hg) =

joint configuration

_E.5/T
Oe 8/ 180‘530‘5 BT

8wij T* J

Learning w/ Hidden Nodes

dP~(V,) % ZB 6—Ea5/TS?ﬁS;X5 Zﬁ e—Eag/TZ EM/T f‘“s;“
— — 2
Ow; Zaﬁ e~ Fas/T (ZAM e~ Exu/T

1 — Q 0 — —
= = Y P (Vo NHg)stPs3? — P=(Va)) P™(Va A HM)S?“S;‘“}
g AL

This is the change of model generated probability of visible state alpha as w_ij changes

P ZP (VanHg)s 557 ZP (VQ)ZP(VA/\HM)S?“S?“]

Ap

0Dk
8wz-j B

P* (Vo NHg) = PT(Hp|Vo)P" (Vo) P~ (Va AHg) = P~ (Hg|Va)P™ (Vo)

P~ (H I6; ‘ Va) = Pt (H 6 ‘ Va) The Pr of hidden states at equilibrium must be the same
given the visible state whether or not that visible state is
reached by environment clamping or free-running!

Learning w/ Hidden Nodes

_ Pt (Va) +
P (Va/\HB)P_(Va) :P+(Va/\Hﬁ) ZP (Vo) =1
o o
0Dkt _ i [pf — p7] Works for any pair of nodes,
Ow; A hidden or visible!

Where

pz;. = Z P (Vo NH 3)8,?B 830_45 Clamped by the environment (Learning)
af

B = Z P - (V\wANH M)S?M S;\M Generated freely (Unlearning)
AR

P (Vo NH B) This represents the Pr of a certain global configuration

when the environment set the marginal P(V,),
and the network generates p— (Hg|Vy)

Learning w/ Hidden Nodes

Learning w/ Hidden Nodes

The training algorithm alternates between two phases, phase+
and phase-

Phase+ 1s known as the learning phase
Phase- 1s known as the unlearning phase
Hinton and Sejnowski came up with the name “unlearning”

from Crick and Mitchson (1983) where REM sleep was
proposed as when reverse learning might occurt!

In BM, it 1s minimizing an info theoretic measure of the
difference b/t environment and model distribution

Also look at as Hebbian learning w/ +ve weights when info
from environment is captured

Hebbian learning w/ -ve weights when system randomly
generates samples from Boltzmann’s distribution

Phase+ (Learning Phase)

Visible nodes are clamped by a particular pattern.

The network 1s allowed to reach thermal equilibrium as

temperature 1s reduced to T_0O(e.g. 10), following an annealing
schedule.

The hidden nodes are the only ones changing its states.
Thermo equilibrium == MCMC convergence; €.g.(S;)

becomes stationary

This simulated annealing is type II and speeds up MCMC
convergence to the distribution P~ (Hjg|V,)

Upon convergence (not before), more iterations (e.g. 10) are
run in which the cotrelation statistics are collected (5;S;)data

The N (e.g. 20) runs are performed as different patterns are
clamped to the input of the network, the (s;s,) 441, averaged
over these trials are ng

Phase- (Unlearning Phase)

B None of the nodes are clamped and the annealing
process 1s the same as phase+

®m The statistics collected 1s 5

r

m The set of 2N annealing process are called 1 sweep

m For each sweep, the correlation for all connections 1]
are collected

m Weight update according to gradient descent on the
KI -divergence

m Weight decay [w(n+1) = w(n)*.9995] can also be used
to serve as a form of regularization and helps
convergence to equilibrium

Nested Loops

while Dy, > €, calculate AW;;

Phase-+, for all patterns V,
Anneal to equilibrium or convergence
Collect corre stat (s;S;)data

Phase-, for all starting patterns V,
Anneal to equilibrium or convergence
Collect corre stat (s;S;)model

Really, really slow...
However, it’s entirely biologically plausible, especially if REM sleep performs
Phase- unlearning

Pros and Cons

Hidden nodes allows for encoding of higher than 224
order regularities

Represent probabilities dzrectly via Gibbs sampler, trying
to emulate the actual process

Unlike other generative models which uses functions to
represent distributions, e.g. PPCA

Conditional inference via clamping: a BM can used for
classification by learning the joint pdf of input and
output; Inferencing takes place by clamping the input
with test data and arriving at the MAP solution!

Really Slow - O(hours -> days)

Extensions

Meanftield approximation speeds up the learning
process at a cost of accuracy (Petersen and Andersen,

1987)
Units take on continuous values (Welling et. al., 2005)

Rate coded BM (Teh and Hinton 2001): estimates the
‘tiring rate’ by these binary stochastic nodes, rate
represent continuous values

Higher ordered BMs (Sejnowski, 19806)

Many more ... since BM is intricately related to MRF
which are part of undirected graphical models

Restricted Boltzmann Machine

m First introduced by (Smolensky, 1986), named “Harmoniums”

m | layer hidden, 1 layer visible; No hidden-hidden or visible-
visible connections

m Hidden nodes are conditionally independent given visible nodes

(Chen. Murray. [11])

Restricted Boltzmann Machine

S, 1 S, S,
P(h1,h2|V) = —e="tst e 2tihe = P(h1|V)P(h2|V)

8DKL 1 4+
(%]

= —=I[p

o T [(vilj)data — (Vilj)modet]
ij

_ 1
- pij] — 7
<vihj>data — <U7th>data,hk:k;:1 ton

<U’i hj>data — <Ui hj>data,hj Because of independence of hidden nodes

(iks)data = (vi X [1 X P(h; = +1|V) + 0 X P(h; = 0|V)]}date Easy to calculate

(Uil) moder still needs Gibbs sampling

Restricted Boltzmann Machine
t“= ir'lf_lr'li't:f

“h“.”,-

t- infinity

(Hinton, 2001)

e Start at a random state in one of the layers

* Perform alternate Gibbs sampling

e All the nodes in one layer is updated in parallel given the other layer
* Repeated until the distribution reaches equilibrium or convergence

Contrastive Divergence Learning

m (Hinton, 2001) To speed things up

Instead of Awij — n(<vihj>data - <vihj>m0del)

Awij — 77(<'Uihj>data — <vihj>recons)

(Vihj)model 15 replaced with (v;h;)recons

1. Starting with the visible units clamped to the data, update all the hidden units in parallel
2. Holding the hidden units constant, update all the visible units — “reconstruction”
3. Update the hidden units again

Contrastive Divergence Learning

Let PT = QO and P~ = QOO Think QO as 2 Markov Chain with the data
distribution at time step 0

Dk = Q°||Q

= (QOHQOO — QlHQOO) Hence the name

oC'D
szj — 77(<'Uihj>da,ta, — <Uih‘j>7"€CO’I’LS) ~

8w7;j

Intuition: To minimize the urges of the chain to wander away from initial
distribution in the first step

Contrastive Divergence Learning

QO ‘ ‘QOO > () 1 ‘ ‘QOO Since we’d be one step closer to equilibrium distribution

Q" == Q' implies Q° == Q*° and the model would be perfect

It is reported to work pretty well and justifies the speed up in not computing)°°
(Hinton, 2002)

So we can learn 2 layer RBM, now let’s learn more layers!

“Deep” Network

m Deep network composed of successive RBM
layers can be stacked one on top of another

m The hidden layer of the bottom RBM serves as
the visible layer of the top RBM

m After training the combined network is a
multilayer generative network

m [earning 1s unsupervised, with the tinal level
features typically much more usetul for
classification

Example — Dimension Reduction

B Autoencoders. Hinton
and Salakhutdinov,
Science, 20006.

m With 2-4 hidden layers,
they are hard to train.
Hasily stuck in local
minimum if initial weights
are too large

m Want to find “good”
weights before beginning
gradient descent

m Use Deep RBM to find

these good weights —
Pretraining

B Progressively reveal low-
dimensional and non-
linear feature in data

| Encoder

Pretraining Unrolling Fine-tuning

(Hinton, 20006)

Dimension Reduction

After pretraining, the RBMs are stacked to form an encoder and
decoder network

Stochastic nodes are replaced by deterministic probabilities

Backprop 1s used to fine-tune the network for optimum
reconstruction

Visible nodes of the first layer RBM replaced with linear units
with gaussian noise

All other visible nodes had [0 1] continuous value and were set

to the probability of the hidden nodes below

All hidden nodes except the “code layer” are binary stochastic
nodes

The hidden nodes in the “code layer” took on value drawn from
unit variance gaussian, mean determined by the input to it

Results

Fig. 2. (A) Top to bottom: A \
Random samples of curves from .
the test data set; reconstructions

produced by the six-dimensional

deep autoencoder; reconstruc-

tions by “logistic PCA" (8) using

six components; reconstructions

by logistic PCA and standard

PCA using 18 components. The

average squared error per im-

age for the last four rows is

1.44, 7.64, 2.45, 5.90. (B) Top

to bottom: A random test image

from each class; reconstructions

by the 30-dimensional autoen-

coder; reconstructions by 30-

dimensional logistic PCA and

standard PCA. The average

squared emors for the last three

rows are 3.00, 8.01, and 13.87.

(C) Top to bottom: Random

samples from the test data set;
reconstructions by the 30-

dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

(Hinton, 2000)

Thoughts

Pretraining 1s useful because it make sure that most information
of weights comes from modeling the data

Unlike LLE and ISOMAP (Both also published in Science in
2000)), it can encode and also decode

Reported 1.2% error rate, beating SVMs and Backprops (No
mentioning of LeNet) on MNIST data set, using 784-500-500-
2000-10 classtficator

Shares similar Encoder->Representation->Decoder semantic

with NEF.

The code layer could represent higher ventral stream areas such
as the anterior inferior temporal lobe, or in the case of faces, the
fusiform gyrus

Conclusion

m Hopfield’s Net and BM intricately connected to Stat
Mech

m Update in Hoptield’s Net: gradient descent
m Update in BM: Gibbs sampling

m BM is a generative model and represents distributions
directly
m BM 1s unsupervised, feedbacks, local learning ->

biologically plausible
B Slowness and ways to speedup using approximations

m Though old, the ideas from BM shows up in many
recent graphical model researches

References

Ackley et al. “A Learning Algorithm for Boltzmann Machines”. 1985
Hinton, Sejnowski. “Learning and Relearning In Boltzmann Machines”. 1986

Peterson. Andersen. “A mean field theory learning algorithm for neural networks”,
1987

Neal. “Probability Inferencing using Markov chain Monte Catlo.” 1993
Duda. Hart. Stork. “Pattern Classification”. 2001

Rowelis. “Boltzmann Machines™.

Hinton. “Training Products of Experts by Minimizing Contrastive
Divergence”. 2002

Hinton. Salakhutdinov. “Reducing the Dimensionality of Data using Neural
Networks”. 2006

Hinton et al. “A Fast Learning Algorithm For Deep Belief Nets”. 2006

Chen. Murry. “Continuous Restricted Boltzmann Machine with implementable
training algorithm”

Eliasmith. “Attractor Network™. Scholarpedia. 2007

Hinton. “Boltzmann Machine”. Scholarpedia. 2007

Salakhutdinov et al. “Restricted Boltzmann Machine for Collabrative Filtering”. 2007

