

How to build a brain Applications

Chris & Terry Centre for Theoretical Neuroscience University of Waterloo

Other applications

• Motor

• Zebrafish swimming and escape (Kuo and Eliasmith (2005) Bio. Cyber.); arm control; eye position control;

Sensory

 Vestibular system (Eliasmith et al. (2002) Neurocomp.); auditory localization; parietal cortex/hemineglect; rodent navigation (Conkiln & Eliasmith, 2005, J. Comp Neuro)

Cognitive

• Working memory dynamics (Singh & Eliasmith (2006) J. Neuro.); emotional effects on decisions (loss aversion); linguistic inference

• Theoretical

- Controlled attractor dynamics (line, circle, plane, cyclic, chaotic) (Eliasmith (2005) Neural Comp.); pattern generation and temporal bases; neural differentiation
- Negative weights problem: Biologically realistic weight distributions for arbitrary networks (Parisien & Eliasmith (forthcoming))

• All together: Biologically realistic models that *explains behaviour*

- this model: 11% error with 4000 cells
- best previous model: 100% error with 300 000 cells

Model accounts for:

- Tuning curves in different environments
- Velocity sensitivity of neuron tuning
- Theta dependent phase precession and amplitude
- Weak visual input gives smooth acceleration
- Strong visual input gives rapid displacement

Model Predicts:

- Identically coupled velocity and direction sensitivity across environments
- Head-direction independent accuracy

Working memory

• Parametric working memory (Singh & Eliasmith (2006) J. Neuro.)

Visual working memory

Working memory

Working memory

Applications

Language-based reasoning

Working memory

Vision

Hemineglect

Complex action (basal ganglia)

Navigation

• Abstract Rule

• If there is a vowel on one side then there is an even number on the other.

30%

90%

Social Rule

• If someone is drinking alcohol then they are over 21.

Learning transformations

Learning HRR transformations

Learning results

	Spikes for Every 10th Neuron in Y (10% N	loise)
	······································	•••
) 		
5		
) 	· · ·	
5 <mark></mark>	······	
		••
, <u></u>		
	······	••••
		•••••
:		
·		
) <u> </u>		••••••• ••••••
	· · · · · · · · · · · · · · · · · · ·	•••

Similarity to Possible Responses

Other theoretical results

- Respecting 'Dale's principle'
- Arbitrary attractor dynamics (line, ring, plane, chaotic, etc.)
- Complex single cell dynamics (adaptation, bursting, etc.)
- Statistical inference
- Pattern generators
- Neural differentiators