

Nonlinear Transformations

Centre for Theoretical Neuroscience University of Waterloo

Nonlinearities via decoding

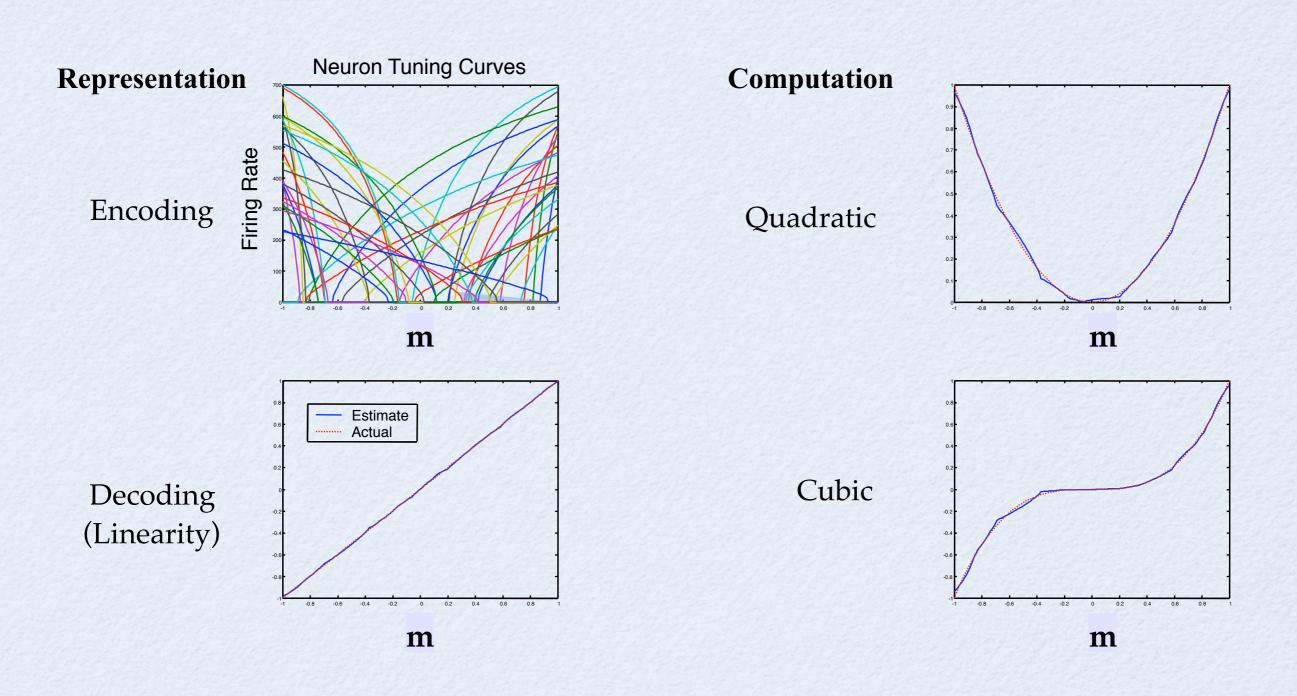
• Find an optimal linear decoder to approximate some function of the space **m**:

$$\hat{f}(\mathbf{m}) = \sum_{l} d_{l}(\mathbf{m}) \phi_{l}^{f}$$

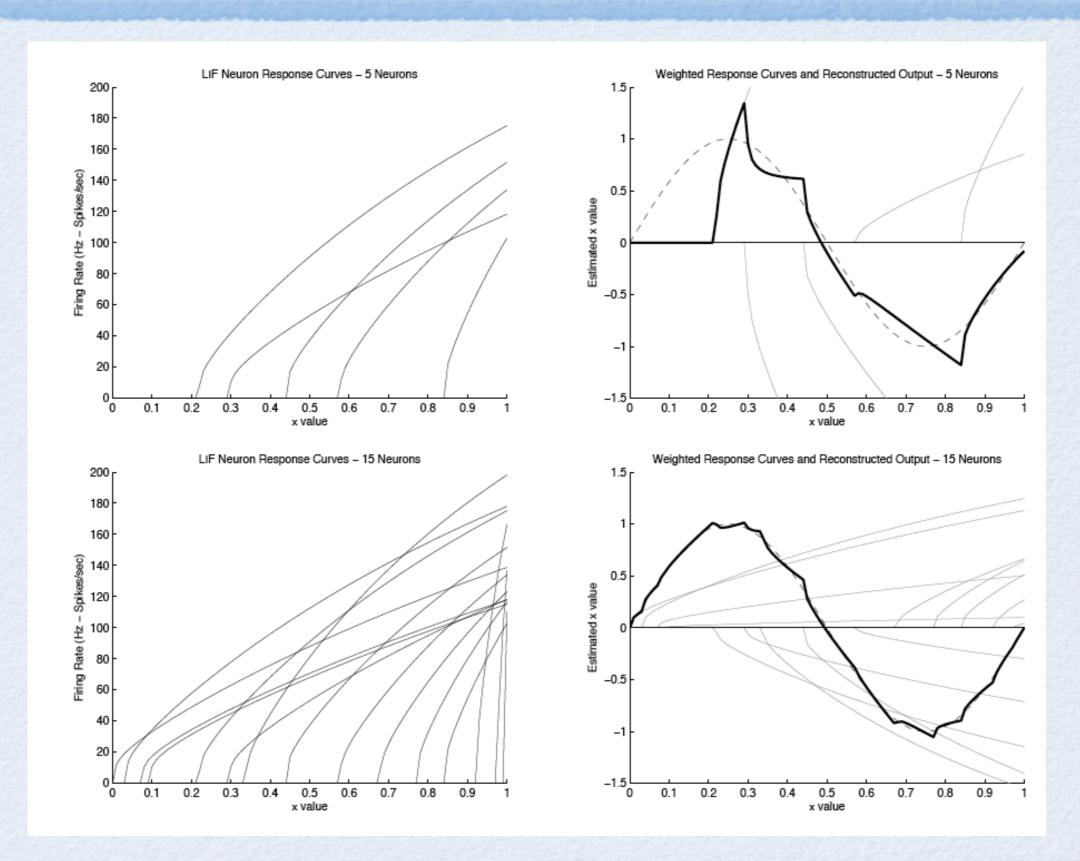
By minimizing

$$E_f = \left\langle \left[f(\mathbf{m}) - \hat{f}(\mathbf{m}) \right]^2 \right\rangle_{\mathbf{m}}$$

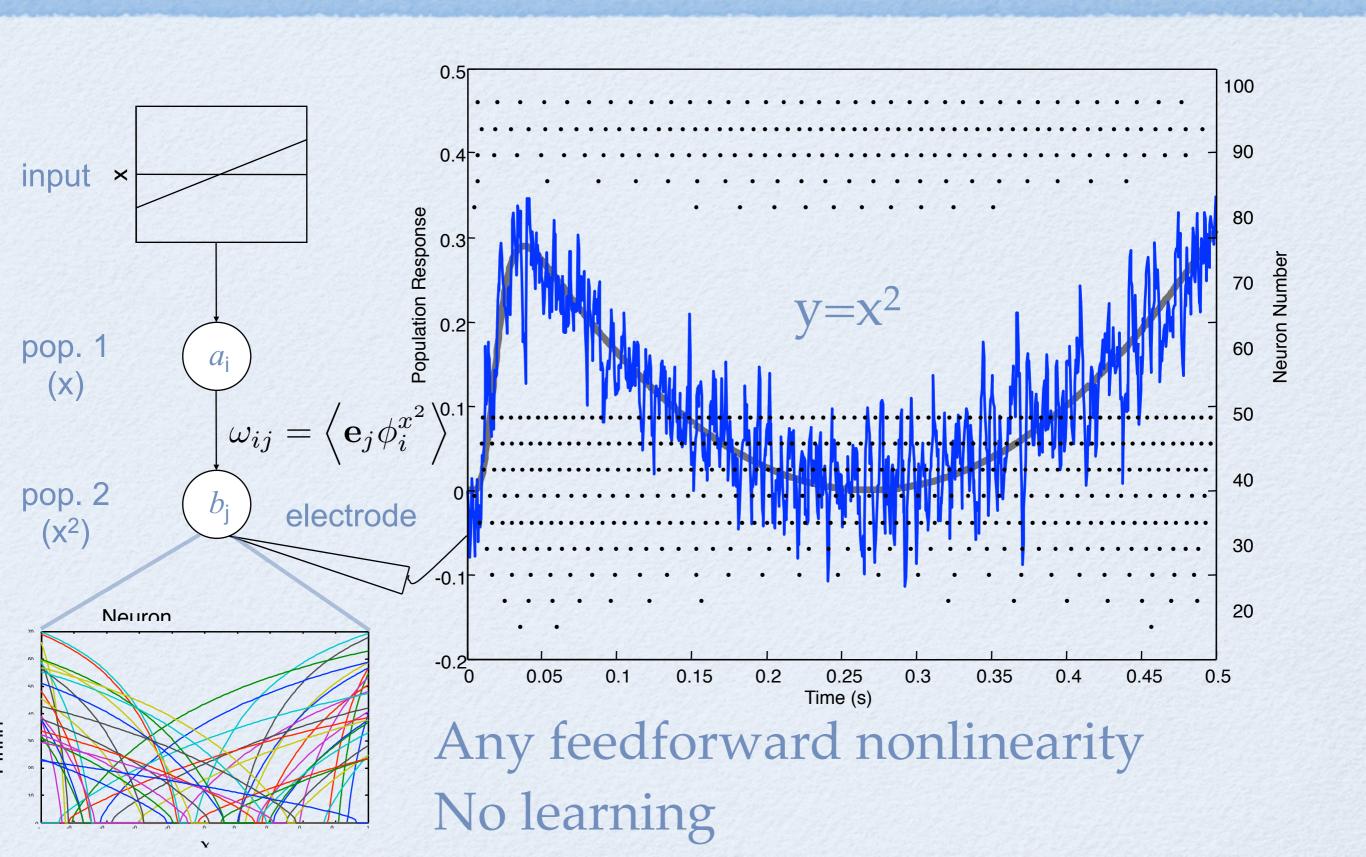
Function decoders



Function approximation

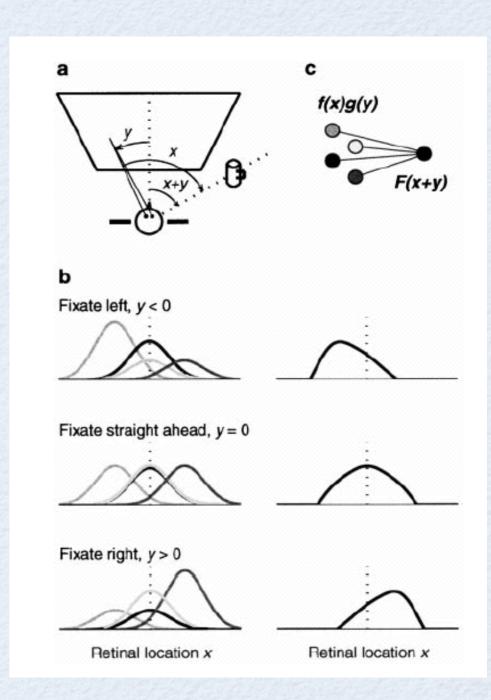


Nonlinearities over time*



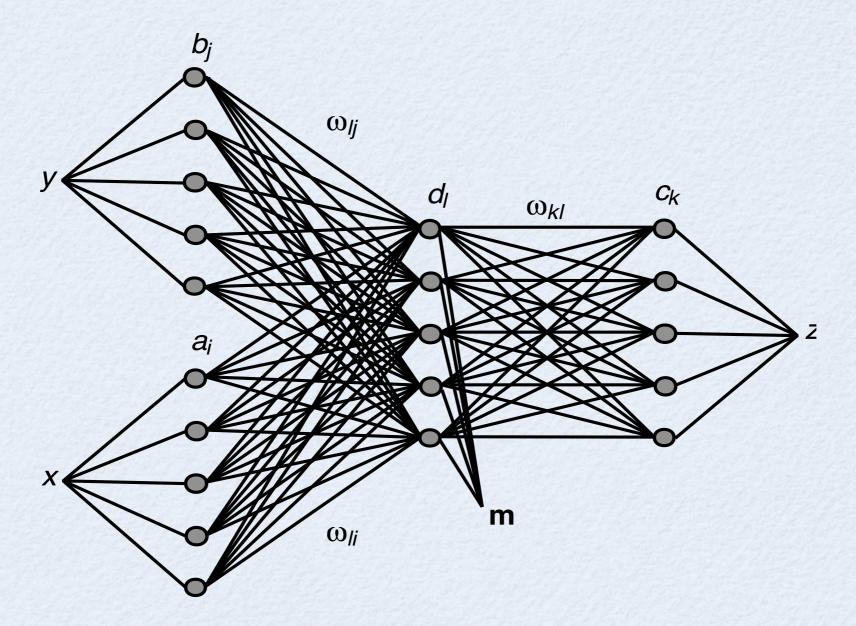
In networks: Gain fields

- The rate of the (idealized)
 neurons in b) are R=f(x)g(y)
- x+y is needed to reach target
- Adding these multiplicatively modulated 'gain fields' gives an estimate
- From Salinas and Their, 2000, Neuron



Nonlinearities via networks

• Form an intermediate representation in a `middle layer' of neurons with dimensionality $D_m=D_x+D_y$



Network nonlinearities

• First find the weights to put the inputs into this D_m -dimensional space

$$d_{l}(\mathbf{m} = [x y]) = G_{l} \left[\alpha_{l} \left\langle \tilde{\boldsymbol{\phi}}_{l} \mathbf{m} \right\rangle + J_{l}^{b} \right]$$

$$= G_{l} \left[\alpha_{l} \left(\tilde{\boldsymbol{\phi}}_{l}^{m_{1}} \hat{\boldsymbol{x}} + \tilde{\boldsymbol{\phi}}_{l}^{m_{2}} \hat{\boldsymbol{y}} \right) + J_{l}^{b} \right]$$

$$= G_{l} \left[\sum_{i} \omega_{li}^{m_{1}} a_{i}(\boldsymbol{x}) + \sum_{j} \omega_{lj}^{m_{2}} b_{j}(\boldsymbol{y}) + J_{l}^{b} \right],$$

$$\omega_{li}^{m_1} = \alpha_l \phi_i^x \tilde{\phi}_l^{m_1} \qquad \omega_{lj}^{m_2} = \alpha_l \phi_j^y \tilde{\phi}_l^{m_2}$$

Network nonlinearities

 Then use the transformation decoders we found earlier to 'extract' the product

$$c_{k}(f(\mathbf{m})) = G_{k} \left[\alpha_{k} \left(\tilde{\phi}_{k} f(\mathbf{m}) \right) + J_{k}^{b} \right]$$

$$= G_{k} \left[\alpha_{k} \left(\tilde{\phi}_{k} \sum_{l} d_{l}(\mathbf{m}) \phi_{l}^{f} \right) + J_{k}^{b} \right]$$

$$= G_{k} \left[\sum_{l} \omega_{kl} d_{l}(\mathbf{m}) + J_{k}^{b} \right]$$

$$\omega_{kl} = \alpha_{k} \tilde{\phi}_{k} \phi_{l}^{f}$$

Comments

- Notice the similarities between 1D and nD case
- Essentially, we have derived the 'hidden layer' typical in ANNs. ANNs with such a layer can compute any function of the input
- Could makes nonlinearities internal to the cell (evidence is controversial, but mounting): would need far fewer cells to do multiplication

Comments*

- Choosing encoding vectors can improve the specific nonlinearity being done
 - E.g. thresholding
 - E.g. quadratic function of x
 - E.g. placing encoders along the diagonal of variables being multiplied