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Abstract

The amygdala (AMY) is widely implicated in fear learning and fear behaviour,

but it remains unclear how the many biological components present within

AMY interact to achieve these abilities. Building on previous work, we hypoth-

esize that individual AMY nuclei represent different quantities and that fear

conditioning arises from error-driven learning on the synapses between AMY

nuclei. We present a computational model of AMY that (a) recreates the divi-

sions and connections between AMY nuclei and their constituent pyramidal

and inhibitory neurons; (b) accommodates scalable high-dimensional repre-

sentations of external stimuli; (c) learns to associate complex stimuli with the

presence (or absence) of an aversive stimulus; (d) preserves feature informa-

tion when mapping inputs to salience estimates, such that these estimates gen-

eralize to similar stimuli; and (e) induces a diverse profile of neural responses

within each nucleus. Our model predicts (1) defensive responses and neural

activities in several experimental conditions, (2) the consequence of artificially

ablating particular nuclei and (3) the tendency to generalize defensive

responses to novel stimuli. We test these predictions by comparing model out-

puts to neural and behavioural data from animals and humans. Despite the

relative simplicity of our model, we find significant overlap between simulated

and empirical data, which supports our claim that the model captures many of

the neural mechanisms that support fear conditioning. We conclude by com-

paring our model to other computational models and by characterizing the

theoretical relationship between pattern separation and fear generalization in

healthy versus anxious individuals.
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1 | INTRODUCTION

Fear conditioning is a process where animals learn
to associate a neutral stimulus with an aversive
(unpleasant) stimulus, such that they exhibit a defensive
response when presented with the neutral stimulus. It is
one of the most common forms of learning in the animal
kingdom and has been widely studied in neuroscience
and psychology. The amygdala (AMY) is an important
locus of fear conditioning in the brain: It undergoes syn-
aptic plasticity during conditioning, and lesions to it
impair both learning and expression of conditioned
responses. Furthermore, AMY modulates cognitive pro-
cesses like perception, attention and decision-making
by orchestrating the brain’s emotional and hormonal
responses to salient stimuli. Understanding learning
within AMY is therefore central to the development of
integrated theories of affective cognition and the treat-
ment of anxiety disorders.

In this paper, we develop a neural model of fear con-
ditioning in AMY that includes numerous biological
details, suggests explainable representations and learning
processes and makes several neural and behavioural pre-
dictions. We hypothesize that fear learning within AMY
emerges as a result of error-driven learning on the synap-
ses between specific AMY nuclei, and we propose a com-
putational model of the required neural mechanisms to
test this theory. Anatomically, our network contains
populations of excitatory and inhibitory neurons, orga-
nized into distinct nuclei, whose internal and external
connectivity are appropriately constrained; we show that
these neurons naturally develop empirically consistent
response profiles over the course of simulated experi-
ments. Functionally, our network learns to associate
aversive events with complex stimuli and environmental
contexts through the use of a novel, scalable learning rule
that accommodates stimuli containing multiple features.
After training our model using standard conditioning
protocols, we test the network’s degree of fear acquisi-
tion, extinction and renewal. From these data, we gener-
ate predictions in three distinct domains. First, we
predict defensive responses to various stimuli and envi-
ronmental contexts. Second, we predict that ablating spe-
cific nuclei (pharmacologically or electromagnetically
inactivating their neurons) causes specific deficits in fear
learning and expression. Third, we predict the extent to
which an individual will generalize a defensive response
to similar stimuli and characterize how the shape of this
gradient depends on the pattern separation induced by
neural tuning curves. Specifically, our model predicts
that when neurons outside AMY are overtuned to a
wide range of external stimuli, AMY will exhibit weak
pattern separation to potential stressors, resulting in the

overgeneralized defensive responses observed in anxiety
disorders.

We begin by reviewing the literature on fear condi-
tioning and summarizing the anatomical properties of
AMY, focusing in particular on the features required for
our functional model. We then introduce the model,
describe our simulated training protocols and run a vari-
ety of computational experiments. From these simulated
results, we derive several predictions and then test those
predictions by comparing simulated data to various clas-
ses of empirical data. We find that our predictions are
well supported by the existing data and propose future
experiments when such data are unavailable. We con-
clude by comparing our model with other neural models
of fear conditioning; discussing the novelty of our
approach with respect to biological realism, explainability
and scalability; acknowledging its limitations; and identi-
fying directions for future work.

2 | BACKGROUND

2.1 | Fear conditioning, extinction and
generalization

Fear conditioning begins by placing an animal into some
environment or ‘context’. A neutral stimulus, referred to
as the ‘conditioned stimulus’ (CS), is presented for a
short duration, and the animal’s baseline defensive
response is recorded. During the ‘aquisition’ or ‘condi-
tioning’ phase, the CS is presented alongside an aversive
stimulus, referred to as the ‘unconditioned stimulus’
(US); the duration, ordering and overlap of the CS and
US are experimental parameters. After multiple ‘pair-
ings’ of the CS and US, the animal learns that the CS pre-
dicts the onset of the US and begins to exhibit the
defensive response to the CS itself. During a ‘fear expres-
sion’ test, the CS is presented alone (without the US),
and the animal’s defensive response is again measured; if
the response is greater than during the baseline test, fear
conditioning has occurred.

Conditioned responses to the CS persist in long-term
memory and are difficult to unlearn. In ‘extinction’ train-
ing, an animal is fear conditioned in the acquisition con-
text (CTX+), then undergoes a second round of training
in some other context. The features of this extinction con-
text are an important experimental parameter: The
extinction context may be identical to the acquisition
context (CTX+), or it may be a new environment with
readily distinguishable features (CTX�). The CS is repeat-
edly presented without the US, and over time, the ani-
mal’s defensive response to the CS diminishes. However,
neural and behavioural evidence suggest that extinction
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does not unlearn the original CS-US association2: Rather,
the animal learns a separate ‘safety’ association that
competes with the fear association and suppresses the
defensive response (Milad & Quirk, 2012; Myers &
Davis, 2002). This suppression is context specific: When
the animal is tested in the extinction context, defensive
responses are suppressed, but when tested in any other
context, defensive responses return. This phenomenon is
called ‘fear renewal’.

Finally, ‘fear generalization’ (Webler et al., 2021) is
the tendency for animals to exhibit defensive responses
to stimuli (environments) that resemble the CS (CTX+).
For instance, animals conditioned to associate a large cir-
cle (CS+) with the US, but a small circle (CS�) with no
US, will exhibit graded defensive responses to circles of
intermediate sizes (Dunsmoor & Paz, 2015; Lissek et al.,
2014). These results suggest that fear learning acts on a
sub-symbolic level of abstraction: Stimuli that share fea-
tures with the CS+ (CTX+) elicit partial defensive
responses.

2.2 | Amygdala neuroanatomy

In this section, we describe how the internal and exter-
nal connectivity of neural populations within AMY, as
well as the interplay between excitatory pyramidal neu-
rons and inhibitory interneurons, are critical for fear
conditioning (Krabbe et al., 2018; Lucas & Clem, 2018;
McDonald, 2020). While numerous other brain areas,
such as medial temporal lobe (MTL), the infralimbic
and prelimb cortices (IL and PL), the bed nucleus of
the stria terminalis (BNST) and the intercalated cells,
are implicated in fear conditioning and coordinating an
animal’s overall defensive response (Luchkina &
Bolshakov, 2019), our computational model focuses on
the intrinsic connectivity within AMY that supports
fear learning and simple defensive behaviours. In
Section 5.2, we discuss in detail other aspects of neuro-
anatomy that are important for fear conditioning and
should be considered in future work.

AMY contains several principal nuclei, including the
lateral amygdala (LA), basolateral amygdala (BLA), cen-
tral lateral amygdala (CeL) and central medial amygdala
(CeM), as shown in Figure 1. While other subdivisions of
AMY are possible (e.g., by cell type McDonald, 2020),
these four nuclei are the most frequently identified in
theoretical accounts of fear conditioning. LA receives
connections from sensory cortices that convey informa-
tion about the external world (McDonald, 2020). The

synapses between long-range cortical axons and the den-
drites of pyramidal cells in LA are the primary site of
acquisition; plasticity within these synapses induces long-
term potentiation in response to coincident CS and US,
increasing the sensitivity of (some) LA neurons to the CS
and driving downstream defensive responses (Krabbe
et al., 2018; Muller et al., 1997; Ressler & Maren, 2019).
LA pyramidal neurons project to BLA and CeL but do
not synapse with neurons outside AMY (Duvarci &
Pare, 2014).

BLA receives fewer connections from sensory cortices
but is reciprocally connected to several structures in the
MTL (including the hippocampus) (McDonald, 2020) and
mPFC (including IL and PL) (Mattera et al., 2020). These
connections are thought to convey high-level contextual
information to the BLA, including episodic memory from
hippocampus and personal identifiers from MTL, and to
facilitate consolidation, allowing the BLA to coordinate
and control defensive responses based on context
(Bocchio et al., 2017; Carrere & Alexandre, 2015;
Duvarci & Pare, 2014; Vlachos et al., 2011). In particular,
BLA is the primary site of contextual extinction: Synaptic
plasticity on BLA pyramidal neurons and/or inhibitory
interneurons is associated with decreased defensive
responses in safe contexts. Pyramidal neurons within
BLA exhibit several characteristic responses: ‘Fear neu-
rons’ become more responsive to CS during acquisition
but become less responsive during extinction; ‘extinction
neurons’ do not respond to the CS following acquisition
but become responsive during extinction; and ‘persistent
neurons’ become CS-responsive during acquisition but
remain responsive after extinction (Duvarci & Pare, 2014;
McDonald, 2020). Unlike LA, BLA neurons project to
several brain areas outside AMY: In addition to recipro-
cal connections with MTL, BLA outputs also reach stria-
tum, which then projects back to cortex, suggesting
triangular connections between BLA, cortex and striatum
(McDonald, 2020). Through these connections, BLA is
implicated in affective labelling, goal-directed behaviour,
planning and decision-making (Mirolli et al., 2010). BLA
also connects to CeM and CeL (directly and via interneu-
rons) (Duvarci & Pare, 2014).

CeL receives external projections from thalamus and
brainstem and internal projections from the LA and ITC.
Like LA and BLA, the responsiveness of CeL neurons
changes during acquisition, indicating that fear condi-
tioning also induces synaptic plasticity within this
nucleus (Keifer Jr et al., 2015). Unlike LA and BLA, CeL
contains exclusively inhibitory interneurons whose recip-
rocal connections control defensive responses (Carrere &
Alexandre, 2015; Keifer Jr et al., 2015). Baseline activity
within CeL ‘off’ neurons inhibits CeM, preventing a
default defensive response, but inactivating these ‘off’

2However, unlearning may occur before long-term memory
consolidation (Myers et al., 2006); we discuss this further in Section 5.1.
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neurons (or activating ‘on’ neurons that inhibit the
‘off’ neurons) produces an unconditioned defensive
response (Ciocchi et al., 2010). CeL may thus act as a con-
trollable gate for CeM-driven defensive responses.

CeM is the major output hub of AMY: It receives
connections from BLA and CeL that convey fear and
safety signals and projects to numerous subcortical struc-
tures that drive basic defensive responses. These targets
include the hypothalamus, which controls endocrine
responses in the brain and body; the periaqueductal
gray, which directs behavioural responses to internal
and external stressors; and numerous other structures in
the sympathetic and parasympathetic nervous system
(McDonald, 2020). Through the CeM, the AMY is able
to regulate the body’s state, to modulate large portions
of the brain and to direct behavioural responses (Mirolli
et al., 2010). In fear conditioning experiments, CeM
appears to integrate the responses learned in LA, BLA
and CeL to coordinate many aspects of an animal’s
subsequent defensive response (Duvarci & Pare, 2014).
Consistent with this theory, activating CeM before train-
ing produces unconditioned freezing, while inactivating
it after training reduces CS-induced freezing (Ciocchi
et al., 2010).

2.3 | Amygdala function

Broadly speaking, AMY is part of the brain’s ‘affective
system’: It helps organisms decide which of their goals to
pursue in the current context. This is likely achieved by
using associative learning to assign ‘salience’ to objects,

people and events in the wider world. Organisms rou-
tinely experience stimuli that have intrinsic or extrinsic
value: Appetitive stimuli like food and sex are naturally
desirable, while aversive stimuli like pain are undesir-
able. These stimuli should be approached, avoided or oth-
erwise acted upon to increase an organism’s chances of
survival and reproduction. We expand on a functional
hypothesis put forward by other theorists and experimen-
talists, which states that the AMY assigns salience to neu-
tral stimuli by learning to associate their presence with
these ‘charged’ stimuli then triggering intrinsic beha-
vioural responses (Duvarci & Pare, 2014; John et al.,
2016; Mirolli et al., 2010). In fear conditioning, AMY
learns to trigger the animal’s innate defensive response
(or ‘unconditioned’ response [UR]) when the CS is reli-
ably paired with the charged US. CS-UR associative
learning guarantees that an organism will rapidly deploy
responses to salient stimuli, independent of environmen-
tal context. This learning is realized in central amygdala
(CeA): Connections from brainstem and thalamus to CeL
convey simple representations of US and CS, while out-
puts from CeM to hormonal systems direct the UR
(Keifer Jr et al., 2015).

As cortex evolved to use more sophisticated represen-
tations of the external world, we believe AMY evolved
more sophisticated mechanisms of assigning salience and
controlling behaviour via LA and BLA. High-dimensional
representations in sensory cortex are conveyed to LA
(McDonald, 2020), which learns to associate these CS
(including auditory, olfactory and visual signals) with
various types of US (Duvarci & Pare, 2014); heightened
responses in LA then drive CeM (via CeL or BLA) to

F I GURE 1 Left: Sketch of amygdala neuroanatomy. Nuclei abbreviations: LA, lateral amygdala; BLA, basolateral amygdala; CeL,

central lateral amygdala; CeM, central medial amygdala. External population abbreviations: Hipp, hippocampus, medial temporal lobe and

medial prefrontal cortex; Cortex, sensory cortices; Hypo, hypothalamus, periaqueductal gray, sympathetic and parasympathetic nervous

system. The grey regions are intercalated cells (ITC). Right: Anatomically detailed model of fear conditioning in the amygdala. Black text

indicates neural populations. Coloured arrows indicate the communication of information or the application of a particular function. See

text for details about the representations used in each population and the functions computed by each connection.
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activate the UR. Compared with CS-UR association in
CeA, this pathway uses more complex representations
of the CS, allowing an organism to distinguish stimuli
that predict the US from those that are present by
happenstance.

A third form of associative learning occurs in BLA,
which helps AMY further distinguish salient features of
the environment from irrelevant distractors. BLA receives
sophisticated representations about an organism’s con-
text (including episodic and emotional memories) from
MTL and mPFC (Bocchio et al., 2017; McDonald, 2020).
However, it is difficult to directly account for this contex-
tual information when learning CS-US associations: We
suspect that learning three-way associations between
CTX, CS and US is more complicated than learning a
series of two-way relations between CTX/CS and
CS/US. More importantly, incorporating CTX informa-
tion directly into CS-US learning rules may cause an
organism to incorrectly identify situations as non-salient.
Neural and behavioural evidence suggest that BLA
learns separate CTX associations that suppress defensive
responses (Duvarci & Pare, 2014; Milad & Quirk, 2012;
Myers & Davis, 2002): LA associations between CS and
US are preserved during extinction training, but BLA
learns a second memory trace that uses CTX information
to correct false positives. This approach ensures that if
the CTX association turns out to be wrong, or if more
complicated contingencies arise, the organism does not
have to relearn the original CS-US association; it simply
amends the secondary memory trace in BLA. Indeed, the
diverse response profiles of BLA neurons may support
contextually-sophisticated salience assessments, possibly
implementing a simple form of model-based control over
fear expression (Prévost et al., 2013). Cortical areas like
MTL and mPFC, whose hierarchical neural architectures
and high-dimensional representations are well suited for
model-based reasoning, may also support complex associa-
tions between CS, US and CTX and relay associative infor-
mation to AMY through the BLA. Finally, contextual
learning in AMY may be supported by reciprocal connec-
tions to, and consolidation within, IL and PL (Mattera
et al., 2020; Pendyam et al., 2013; Sierra-Mercado et al.,
2011; Sotres-Bayon & Quirk, 2010)

Taken together, this hypothesis prescribes the roles of
the various AMY nuclei in an evolutionarily plausible
manner and shows how parallel learning rules may coor-
dinate diverse responses to salient stimuli. This account is
consistent with other models of AMY function, both con-
ceptual (Mirolli et al., 2010) and computational (Carrere &
Alexandre, 2015; Duvarci & Pare, 2014). In the next sec-
tion, we propose a computational model that realizes this
account and tests a more specific hypothesis: that AMY
uses error-driven learning rules to estimate the salience of

external inputs using a particular representational scheme.
The goal of this model is therefore to rigorously specify
the functional capabilities described qualitatively in
Section 2.3 while adhering to the anatomical constraints
described in Section 2.2. Given that these two objectives
are sometimes at odds (i.e., adding more biological detail
may not improve function and may hinder explainability),
we focus on building a functional model of AMY itself:
Each population in our spiking neuron model has a well-
defined functional role and is biologically constrained, but
we do not describe the populations and connections out-
side AMY in detail, nor do we include biological compo-
nents within AMY whose functional purpose we cannot
surmise. We construct our model using theoretical tools
that facilitate scalability and modularity, allowing future
research to expand on the functionality and biological
plausibility of the current work: We discuss the particulars
of these extensions in Sections 5.1 and 5.2.

3 | MATERIALS AND METHODS

3.1 | Neural engineering framework
(NEF)

Our AMY model is built using the NEF (Eliasmith &
Anderson, 2003), a highly successful theory for building
biologically constrained neural networks with functional
capabilities (Eliasmith, 2013). Previous NEF models have
been used to study reinforcement learning in cortex and
basal ganglia (Duggins et al., 2022; Rasmussen, 2014),
associative learning in cortex (Borst et al., 2018; Stewart
et al., 2011; Voelker et al., 2014), temporal and spatial
learning in hippocampus (Dumont et al., 2023, 2022),
spike-timing-dependent plasticity (Bekolay et al., 2013;
MacNeil & Eliasmith, 2011), adaptive motor control
(DeWolf, 2015) and end-to-end learning of complex cogni-
tive tasks in the world’s largest functional brain model
(Eliasmith et al., 2012). NEF models facilitate explanability
by (a) grounding symbol-like representations in spiking
neural activity and (b) grounding learning in the synaptic
connections between populations of neurons: As a result,
the relationship between the cognitive capacity of a model,
and its biological implementation in a neural network, is
always well defined. Finally, NEF models frequently pro-
vide testable predictions that have been validated in subse-
quent empirical experiments; for instance, an NEF model
of path integration (Conklin & Eliasmith, 2005) has been
credited with predicting the existence of grid cells
(Zilli, 2012) and the result that path integration is indepen-
dent of head direction (Maurer et al., 2014). Together,
these features make NEF models well suited to the study
of learning in the biological brain.

DUGGINS and ELIASMITH 5
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The NEF characterizes spiking activity within popula-
tions of neurons as encoding information in a latent state
space. While spikes are the physical means of communi-
cation between neurons, cognition can be analysed as
transformations of these states, permitting a more com-
pact description of what brains do (Boerlin et al., 2013;
Gallego et al., 2017; Recanatesi et al., 2022). We assume
that states in this state space can be represented by a
vector-valued signal xðtÞ and that the cognitive opera-
tions performed in the brain may be described as dynami-
cal transformations of xðtÞ.

The NEF begins by defining methods for encoding
and decoding between neural activity and the state space.
A neuron will fire most frequently when presented with
its particular ‘preferred stimulus’ and will respond less
strongly to increasingly dissimilar stimuli. Each simu-
lated neuron i is accordingly assigned a preferred direc-
tion vector or encoder. When driven with an external
signal xðtÞ, the firing rate of the neuron is given by

aiðtÞ¼G½αiei �xðtÞþβi�, ð1Þ

where aiðtÞ is the spiking activity of neuron i,G is the
neuron model with electrical current inputs ½��,αi is
the gain, βi is the bias current and ei �xðtÞ is the dot prod-
uct between the state space inputs and neuron’s encoder.
A distributed encoding extends the notion of representa-
tion: If xðtÞ is fed into multiple neurons, each with a
unique tuning curve defined by ei,αi and βi, then each
neuron will respond with a unique spiking pattern aiðtÞ,
and the collection of all neural activities will robustly
encode the signal.

In order to recover, or decode, the state space infor-
mation encoded in neural spike trains, the NEF also
defines decoders di, which either perform this recovery or
compute arbitrary functions, f ðxÞ, of the represented vec-
tor. A functional decoding with d f

i allows networks of
neurons to transform the signal into a new state, which is
essential for performing cognitive operations. To com-
pute these transformations, a linear decoding is applied
to the neural activities:

f̂ ðxðtÞÞ¼
Xn

i¼0

aiðtÞd f
i , ð2Þ

where aiðtÞ is the activity of neuron i,n is the number of
neurons and the hat notation indicates that the computed
quantity is an estimate of the target function. Connection
weights between each presynaptic neuron i and each
postsynaptic neuron j are composed of encoders and
decoders:

w¼ e�d f : ð3Þ

In our AMY model, encoders are randomly distrib-
uted across a unit hypersphere with dimensionality D,
ensuring that the neural population will effectively repre-
sent a state space signal x�ℝD. We use two methods to
choose decoders. For connections that compute well-
defined functions, we perform an offline least-squares
optimization to solve for decoders that minimize the
error between the neural estimate and the target function
(see Eliasmith & Anderson, 2003 for details). For connec-
tions that learn associations, we use an online, spike-
based, error-driven learning rule called the prescribed
error sensitivity (PES) rule (MacNeil & Eliasmith, 2011):

Δωij ¼ Δdi �αjej ¼ ϵ
n
αjej �aiðx̂ðtÞ�xðtÞÞ, ð4Þ

where ϵ is the decoder learning rate, n is the number of
presynaptic neurons, ai is the filtered activity of the pre-
synaptic neuron i, xðtÞ is the state space target and x̂ðtÞ is
the estimate decoded with Equation (2). Conceptually,
Equation (4) uses the error between the decoded estimate
and state space target to update the decoders during the
simulation. Extensive work with the PES rule in NEF
networks has shown it is capable of learning decoders to
compute a wide range of functions (Voelker, 2015), and
the PES rule has been shown to reproduce neural
and behavioural data in brain areas ranging from cortex
(Duggins et al., 2022) to hippocampus (Dumont et al.,
2022) to cerebellum (Stöckel et al., 2021). As we discuss
in detail in Section 5.1, the application of a scalable error-
driven learning rule to fear conditioning in AMY is a
novel contribution of this work: While most other com-
putational model of AMY use Hebbian rules to learn
associations between simple stimuli (see Section 5.3), the
PES rule allows our model to learn complex associations
between feature-rich stimuli. As a result, our model
makes novel predictions about fear generalization in
AMY that are outside the scope of previous models.

3.2 | Network structure and function

Our AMY model aims to realize the functionality
described in Section 2.3 while respecting the anatomy
described in Section 2.2. The complete network architec-
ture is shown in Figure 1 (right panel). In this section, we
introduce and analyse the components in a piecewise
manner to clarify how they act in isolation.

Input signals conveying CS, US and CTX information
drive three external (EXT) populations. The CS signal has
dimensionality D¼ 3 and is presented for a duration of
1 s, followed by 1 s of silence (all zeros). The US signal is
one dimensional (indicating the presence or absence of

6 DUGGINS and ELIASMITH
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the US) and is presented alongside the CS during acquisi-
tion (1 s on, then 1 s off). The CTX signal has dimension-
ality D¼ 5 and remains constant during acquisition, then
changes during extinction or testing. Note that these D
are free parameters of the model that represent the num-
ber of features present in the CS and CTX signals: Higher
dimensional signals imply more sophisticated hierarchies
for sensory processing that produce more complex sen-
sory (or temporal) representations, but scaling D does not
change the structure of the model. We found that three
to five features per signal was sufficiently complex to per-
form the generalization experiments in Section 4.6. To gen-
erate the vectors corresponding to CS and CTX, we drew
samples from the surfaces of D-dimensional hyperspheres:
This ensures that the magnitude of the population

response induced by different stimuli is approximately
equivalent, even though each stimulus activates a differ-
ent subset of EXT neurons. The dynamics of stimulus
presentation are shown in Figure 2 (first panel).

We begin by learning CS-US associations in the
LA. LA contains three populations: LApyr is excitatory
pyramidal neurons that (may) become CS-sensitive dur-
ing fear acquisition, LAinh is inhibitory interneurons that
gate learning and LAerr is neurons that calculate the
required update signal. All three populations receive
information about the CS and US, either directly (from
EXTcs or EXTus) or indirectly (from LApyr or LAinh).
LApyr and LAinh represent two-dimensional vectors
(CS and US response), while LAerr represents a one-
dimensional vector (CS response error). The US is

F I GURE 2 Dynamics of fear acquisition and extinction. The first panel indicates when CS, US and CTX are applied. Plotted CS values

indicate the presence of the three-dimensional CS signal, while plotted CTX values are the dot product between the current context and

CTX+, both of which are five-dimensional vectors. The remaining panels plot x̂ðtÞ, the values decoded from the spiking activity of the

indicated populations (Equation 2). These unitless estimates can be used to decipher the internal representations in the model. During

acquisition, PES learning causes LApyr’s CS response to rise until the value represented in LAerr reaches zero, and these responses persist in

the new CTX. Coincidentally, fear conditioning causes CeLon neurons to become CS-responsive. These neurons inhibit CeLoff neurons and

disinhibit CeM, causing a defensive response. During extinction, CTX�induced safety responses are learned in BLApyr; these signals compete

with the fear signals from LApyr and CeLon and partially suppress the defensive response in CeM. The decoded output of CeM (last panel)

indicates the model’s overall defensive response.

DUGGINS and ELIASMITH 7

 14609568, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16338, W

iley O
nline L

ibrary on [15/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



transmitted to all three populations via fixed connections,
but each population responds to the CS differently. LApyr

is initially unresponsive to the CS, but (some) neurons in
this population become CS-responsive during acquisition.
Specifically, synaptic weights on the connection between
EXTcs and LApyr are initialized to zero and updated using
an the error signal computed in LAerr. In contrast, LAinh

responds to the presence of CS via a fixed connection
from EXTcs: If any CS is present, LAinh will represent x̂¼
1 and will otherwise represent x̂¼ 0.

LAerr represents the difference between the US and
CS values represented in LApyr. If this difference
(US minus CS) is positive, it means that a US is currently
active but that LApyr is not responding to the coincident
CS. To correct this error, we apply PES (Equation 4) to
update the decoders on the connection between EXTcs

and LApyr. Online learning is driven by positive error in
LAerr, causes LApyr’s CS response to increase and stops
when the computed error is reduced to zero. Unfortu-
nately, with this configuration, repeated presentation of
the CS without the US will negate the CS-US association:
Negative representations in LAerr produce negative
changes in the decoders that directly oppose the original
association. To ensure this unlearning does not occur in
later stages of the experiment, we use two additional
mechanisms. First, we use LAinh to convey US informa-
tion to LAerr; if we externally inhibit LAinh, we can con-
trol neural activities and prevent learning. Second, we set
the encoders, gains and biases in LAerr such that its neu-
rons are not active when the CS exceeds the US; setting
the tuning curves in this way causes the population to
represent x̂¼ 0 whenever the error is negative, which
also prevents learning.

Figure 2 (second panel) shows the dynamics of fear
acquisition in LA. The y axis plots the values decoded
from the spiking activities of simulated neural popula-
tions, with higher values indicating a stronger response.
We begin with a baseline test: The CS is presented in iso-
lation, but LApyr does not respond. Next, five CS-US pair-
ings are presented: LApyr exhibits a large US response but
no CS response, leading to a large error in LAerr (fifth
panel) and rapid updates of the connection between
EXTcs and LApyr. By the fourth pairing, the CS response
has risen to meet the US response. To simulate extinc-
tion, we switch the context from CTX+ to CTX�, then
repeatedly apply the CS. Due to the tuning of LAerr neu-
rons, the negative error between LApyr’s US and CS
response is encoded as x̂¼ 0, preventing unlearning and
leading to persistent fear.

Next, we add several populations for the CeA. Broadly
speaking, CeL learns CS-US associations during acquisi-
tion and transmits defensive responses from LA to CeM;
while CeM is the output nucleus, combining fear and

safety signals from all other populations into a final
defensive response. LApyr connects to CeLon, which
inhibits CeLoff , which in turn inhibits CeM. During
acquisition, CeLon learns to mirror the CS responsiveness
of LApyr, as shown in Figure 2 (third panel): The error
population CeLerr calculates the difference between
responses in CeLon and LApyr, which drives learning on
the connection between LApyr and CeLon. Following
acquisition, CeLon inhibits CeLoff , which disinhibits CeM
and creates a defensive response.

Finally, we add four BLA populations. BLApyr repre-
sents learned responses to CS, US and CTX; it receives
CS and US information from LApyr and CTX information
from EXTctx. The former connection is fixed, and the lat-
ter is learned with the help of BLAerr-safe and BLAerr-fear,
which govern extinction learning and context-dependent
fear conditioning, respectively. BLAinh gates contextual
learning in a manner similar to LAinh: It receives CS and
US information from BLApyr and transmits these signals
to the error populations; and it inhibits the error popula-
tions such that (a) contextual fear acquisition occurs fas-
ter than de-acquisition and (b) extinction learning only
occurs when the CS is present without the US. Finally,
BLApyr connects to CeM, enhancing or suppressing the
overall defensive response.

Figure 2 (fourth panel) shows the dynamics of BLApyr

responses during acquisition, extinction and testing. Dur-
ing acquisition, BLApyr’s CS response is driven by LApyr,
and BLApyr’s CTX response increases as it learns to asso-
ciate CTX+ with US. At the beginning of extinction, the
context switches to CTX�, a novel five-dimensional vec-
tor with a unique set of component features. This novel
environment activates a different set of EXTctx neurons;
because CTX� shares few feature with CTX+, most neu-
rons that activate in response to CTX� did not undergo
synaptic plasticity during acquisition in CTX+. This effec-
tively resets BLApyr’s CTX response to zero. As extinction
proceeds, newly activated EXTctx neurons become the
basis for a new learned association between CTX�, CS
and the absence of US. This association drives BLApyr’s
CTX response to negative values; when this CTX�re-
sponse is added to the CS-induced defensive response in
CeM, the result is suppressed fear expression.

4 | RESULTS

Having established the basic functionality of the model
in Figure 2, we now run a series of experiments to assess
the model’s neural and behavioural realism. To do so,
we simulate the model and interpret its outputs as pre-
dictions in various experimental contexts. We then vali-
date these predictions against empirical data wherever

8 DUGGINS and ELIASMITH
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possible and suggest future experiments to test the
remaining predictions.

4.1 | Dynamics of extinction

We began by characterizing the defensive responses
exhibited by the model over the course of training. In this
experiment, we simulated an acquisition phase (five CS-
US pairings in the acquisition context, CTX+), an extinc-
tion phase (10 unpaired CS in either CTX+ or a novel
context CTX�) and a test phase (five unpaired CS in the
extinction context, CTX+ or CTX�). We simulated and
trained 10 unique instances of our model; to approximate
the variance between individual animals, each model
instance had randomized tuning curves and learning
rates. We characterized the model’s defensive response
by recording the decoded value from CeM. Figure 3 plots
this response as a function of time, with each point repre-
senting a single presentation of the CS. Consistent with
empirical observations of fear conditioning and extinc-
tion, our model’s defensive response increased rapidly
during acquisition and plateaued at some maximum
value, then decreased slowly during extinction (and
subsequent testing) and plateaued at some small
positive value. Comparing defensive responses when
extinction occurs in different contexts, we observed that
extinction training is more effective when performed in a
novel context (CTX�) than in the acquisition context
(CTX+). However, with enough extinction training in the
acquisition context, the model will still learn to suppress
the CS-US association. Note that changing model param-
eters, such as the learning rates, contextual distinctive-
ness and the strength of LA versus BLA outputs,
determines the (a) amount of time required for successful
extinction and (b) the relative difficulty of extinguishing

the defensive response in CTX+ versus CTX�. Also note
that extinction continues during the test phase, because
continued presentation of the CS without US will con-
tinue to teach contextual safety associations that further
suppress the defensive response.

4.2 | Renewal

Next, we performed a fear renewal experiment: Our pro-
tocol, adapted from Lonsdorf et al. (2017), involved an
acquisition phase (five CS-US pairings in CTX+),
an extinction phase (10 unpaired CS in CTX�) and a test
phase (one unpaired CS in either CTX+, CTX� or a novel
CTX∗). We generated a dataset for analysis by simulating
and training 10 unique instances of our model. Figure 4
(right panel) reports the results: The model’s defensive
response is zero before training and is greatest when the
model is presented with the CS in CTX+ during testing.
In CTX�, the defensive response is mostly suppressed,
but in a novel CTX∗, it is renewed. To validate these
results, we compared our model outputs with beha-
vioural data from animal studies and human experi-
ments. Across conditioning paradigms, fear metrics and
study animals, the empirical data show a clear trend:
Defensive responses are greatest when the CS is pre-
sented in CTX+, are reduced in CTX� and are renewed to
varying degrees in a novel CTX∗ (Antoniadis &
McDonald, 1999; Bouton & Bolles, 1979; Hermans
et al., 2005, 2006; Lovibond et al., 2000; Vansteenwegen
et al., 2006). For example, the left panel of Figure 4 plots
the fear response of 28 human participants on an aversive
conditioning task, operationalized using self-reported
evaluative ratings. This confirms our experimental pre-
dictions regarding the magnitude of a defensive response
following conditioning and extinction.

F I GURE 3 Dynamics of defensive responses following extinction in two different contexts. The line represents the defence response

averaged across 10 model instances, while the shaded region represents variance between instances. After training a CS-US association

during acquisition, we performed extinction training in either the acquisition context (CTX+) or a novel context (CTX�). Suppression of the

defensive response proceeded faster in a novel context, but given enough training, the model learned to suppress roughly 75% of the

acquired defensive response when tested in either extinction context.
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4.3 | CS representation

How does the spiking neural representation of the CS
change during the course of learning in our model? To
answer this question, we recorded spikes from LApyr dur-
ing acquisition and compared them with the responses
induced by presenting the US before acquisition. Figure 5
(top panel) shows the firing rate of three neurons in

LApyr over time. The first neuron increases its firing rate
in response to US; during acquisition, the CS-induced fir-
ing rate of this neuron increases, such that its CS-induced
activity begins to resemble its US-induced activity. In
contrast, the second neuron lowers its activity in response
to US, and during acquisition, its CS-induced activity
decreases. Finally, the third neuron is not initially
responsive to either US or CS during acquisition, but its

F I GURE 4 Left: Empirical data on fear expression. In Hermans et al. (2005), the authors paired CS+ with US and CS� with safety

during acquisition, then removed the CS+-US association during extinction. Reported values indicate the differences between participant

CS+ and CS� fear responses during a reinstatement test, as measured by self-reporting (n¼ 28 split across two groups; we renormalized

response values to fall between 0 and 1). Similar results have been obtained in rats using other protocols (Bouton & Bolles, 1979). Right:

Defensive responses across 10 unique model instances. Networks were subjected to acquisition and extinction training then tested in three

different contexts: the acquisition context CTX+, the extinction context CTX� or a novel context CTX∗. Consistent with empirical data,

defensive responses are negligible before conditioning (control) and greatest in CTX+; defensive responses in CTX� are greatly reduced due

to contextual extinction but reemerge in novel CTX∗. Error bars plot 95% bootstrapped confidence intervals across model instances.

F I GURE 5 Top: Spiking activity of three simulated LApyr neurons during acquisition. Time windows corresponding to CS and US

presentations are shown in green and orange, respectively. Fear conditioning potentiates some neurons (left), depresses others (centre) and

may even cause more complex changes (right). Bottom: The CS-induced response of each simulated neuron in LApyr before (left) and after

(right) acquisition training, compared with their US-induced responses before acquisition (orange). In general, the changes in CS

representation across the entire population cannot be characterized as movement towards the US representation.
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CS- and US-induced activities both increase during train-
ing. Fear conditioning thus induces both potentiation
and depression among simulated pyramidal neurons, as
has been observed empirically in LA and BLA (Grewe
et al., 2017).

However, an examination of neural activities across
the entire population reveals a more complex story.
Figure 5 (bottom panel) plots the CS- and US-induced
activities of all simulated neurons in LApyr before and
after acquisition. While a proportion of neurons follow
the pattern observed in the top panel (their CS-induced
activity changes to resemble their US-induced activity as
a result of learning), many neurons do not follow this
trend or even exhibit the opposite trend. Our model pre-
dicts that learning induces complex changes in the CS
response of LA and BLA pyramidal neurons, rather
than simply causing these neurons to exhibit US-like
responses when presented with the CS, as has been sug-
gested by some (Grewe et al., 2017).

4.4 | Neural responses

To further characterize the response properties of our
simulated neurons following acquisition and extinction,
we classified neurons in LA and BLA based on their
mean firing rates before and after training, as per Ressler
and Maren (2019), Bocchio et al. (2017) and Herry et al.
(2008). LApyr neurons were labelled ‘up’ neurons if their
mean activity grew by at least 50% following conditioning
(baseline versus CTX+ test) and labelled ‘down’ if their
mean activity shrank by at least 50%. Similarly, BLApyr

neurons were labelled (a) ‘fear’ neurons if they became
responsive during acquisition but were suppressed by
extinction (50% increase from baseline to CTX+, 50%
decrease from CTX+ to CTX�); (b) ‘extinction’ neurons if

they became responsive during extinction (50% increase
from CTX+ to CTX�); and ‘persistent’ neurons if they
became responsive during acquisition and were not sup-
pressed by extinction (50% increase from baseline to
CTX+, then a decrease of less than 50% between CTX+

and CTX�).
Figure 6 reports the changes in neural activities fol-

lowing training. Unlike previous AMY models (Carrere &
Alexandre, 2015; Mattera et al., 2020; Vlachos et al.,
2011), we did not specify the existence of these classes of
neurons ahead of time: These response patterns emerge
naturally as a result of learning within an undifferen-
tiated and fully connected population of neurons in LA
and BLA (we discuss this point further in Section 5.3).
The emergence of these characteristic response profiles is
qualitatively consistent with electrophysiological data
(McDonald, 2020; Krabbe et al., 2018). Our model also
quantitatively predicts the relative frequency of neurons
from these different classes. For each model instance, we
recorded the number of neurons in each category, then
divided by the total number of neurons in that popula-
tion. We found that the 20% to 34% of simulated LA neu-
rons were ‘up’ neurons while 33% to 39% were ‘down’
neurons and that 4% to 8%, 25% to 35% and 5% to 15% of
simulated neurons were ‘fear’, ‘persistent’ and ‘extinc-
tion’ neurons, respectively. To validate these predictions,
we searched the literature for empirical estimates of the
measured frequency of neurons from each class. Unfortu-
nately, few studies report these metrics, and each study
uses a different experimental procedure and measure-
ment criteria (Gründemann & Lüthi, 2015). Still, empiri-
cal estimates support our model predictions: For
instance, estimates of the prevalence of LA ‘up’ neurons
(those that become more responsive to CS following
acquisition) range from 5% at the low end (Kyriazi et al.,
2018) to 40% at the high end (Ressler & Maren, 2019),

F I GURE 6 Mean firing rates of neurons with characteristic response profiles. Population firing rates were measured by convolving

simulated spike trains with a low-pass filter (τ¼ 30ms) and averaging over time and neurons. Colouration indicates the context in which

these measurements were taken: Blue bars show the baseline mean firing rate before conditioning, while orange and green bars show the

mean firing rate following acquisition and extinction training, when the network is presented with the CS in either the acquisition context

(orange) or the extinction context (green). For each population, differences between coloured bars demonstrate characteristic response

profiles: For example, BLA ‘fear’ neurons are initially quiet, activate in response to the CS presented in CTX+ but are inhibited when the CS

is presented in CTX�.
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with estimates in the range of 20% to 30% being common
(Bocchio et al., 2017; Ressler & Maren, 2019). Future
work that rigorously characterizes the frequency of neu-
ral responses in LA and BLA, across a large sample of
cells and individuals, is needed to further test these
predictions.

4.5 | Ablation studies

Many researchers who study fear conditioning use phar-
macology, lesioning or direct brain stimulation to exter-
nally manipulate neural activities, providing important
insights into AMY’s functional neuroanatomy. We ran a
series of experiments in which we directly inhibited
model neurons and observed the effects on acquisition,
extinction or expression, thereby predicting the conse-
quence of externally perturbing AMY. Note that these
perturbations are not intended to mimic a natural neuro-
biological process but to recreate empirical ‘ablation
studies’ that help diagnose the functional contribution of
each AMY nucleus. In each of the following experiments,
we delivered a constant negative current to all neurons
within one nucleus during one phase of our experimental
protocol, then compared the resulting defence response
with the baseline (control) response. Table 1 reports our
model predictions and indicates whether empirical data
support or contradict each prediction.

Inhibiting pyramidal neurons in LA prevents the
learning of CS-US associations during acquisition and
reduces fear expression during testing, either in the
acquisition context (CTX+) or the extinction context
(CTX�) (Muller et al., 1997). Our model predicts both
these effects. We also predict that inhibiting LApyr during
extinction will impair contextual learning: Although
such learning occurs entirely in BLA, our model implies
that healthy LA activity is required to relay stimulus

information to BLA. We were unable to find any empiri-
cal data to validate this prediction.

Inhibiting interneurons in LA prevents the learning
of CS-US associations. Empirically, the precise timing of
inhibitory spikes is essential for long-term potentiation
in pyramidal neurons, and complex networks of inhibi-
tion and disinhibition may facilitate pattern separation
in LA and BLA (Krabbe et al., 2018). Although PES is
not an spike-timing-dependent plasticity rule and does
not explicitly perform pattern separation (but see
Bekolay, 2011; Bekolay et al., 2013), our model success-
fully predicts that inhibiting LAinh impairs fear acquisi-
tion but preserves fear expression. We also predict that
inhibiting LAinh during extinction leads to reduced fear
expression, but were unable to find any empirical data
for validation.

Inhibiting pyramidal neurons in BLA prevents extinc-
tion and leads to stronger defensive responses in CTX�

(Laurent & Westbrook, 2008; Sierra-Mercado et al., 2011).
Our model correctly predicts this effect, both for extinc-
tion training and subsequent tests in the extinction con-
text. We also observe that inhibiting BLApyr during
acquisition impairs defensive responses, presumably
because contextual fear associations are not properly
learned. We predict that, in experiments where contex-
tual cues associate with the US, inhibiting pyramidal
neurons in BLA will impair acquisition to a modest
degree. We note that empirical studies have drawn
different conclusions about the effects of inhibiting pyra-
midal ‘BLA’ neurons in acquisition versus extinction
(Laurent & Westbrook, 2008; Muller et al., 1997; Sierra-
Mercado et al., 2011). We attribute this confusion, in part,
to the ambiguous boundary between LA and BLA: Appli-
cation of receptor agonists and antagonists to lateral parts
of the AMY will probably affect both CS- and CTX-
sensitive pyramidal neurons, which we functionally sepa-
rate into LA and BLA (respectively) in our model. More

TAB L E 1 Defensive responses when one AMY nucleus is externally inhibited during one phase of a fear conditioning protocol.

Inhibited population / During Acquisition CTX+ Extinction CTX� Expression CTX+ Expression CTX�

LApyr .007 .802 .347 .0

LAinh .601 .022 .929 .176

BLApyr .527 .710 .385 .385

BLAinh .527 .636 .929 .176

CeL .932 - 1.038 -

CeM .929 - .0 -

None .930 .203 .930 .203

Note: Data are collected from 10 unique networks, and mean defensive response is indicated (higher numbers indicate a stronger response). Rows indicate
which AMY nucleus was inhibited, and columns indicate when the inhibition was applied. The final row indicate the baseline defensive response when no
inhibition was applied (control). Marks indicate whether the model prediction agrees with empirical evidence (green), disagrees (red) or is ambiguous or
untested (teal); see text for details.
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targeted interventions are therefore necessary to validate
some of our predictions for BLApyr.

Inhibiting interneurons in BLA has varied effects on
fear conditioning. Optogenetically inactivating BLA neu-
rons during acquisition appears to facilitate fear learning
(Krabbe et al., 2018). Our model predicts the opposite
effect: Inactivating BLAinh impairs fear conditioning. One
explanation for this discrepancy is that Krabbe et al.
(2018) targeted only a single interneuron cell type
(PV neurons); inhibiting other interneuron subtypes
(such as SOM and CCK) might impair fear acquisition, as
we observed. In contrast, disrupting BLA interneurons
during extinction, or ablating axoaxonic inhibitory
synapses in BLA (Saha et al., 2017), appears to impair
contextual safety learning (Krabbe et al., 2018); our
model predictions support this conclusion. Finally, our
model predicts that inhibiting BLA interneurons should
have no significant effect on expression following train-
ing and consolidation, but we were unable to find any
validating data.

Inhibiting neurons in CeL produces different effects,
depending on when the inhibition is applied. Inhibiting
CeL before acquisition removes its default inhibition of
CeM, causing unconditioned defensive responses, but
inhibiting CeL after acquisition has no significant effect
(Ciocchi et al., 2010). Our model correctly predicts both
these effects. However, while our model predicts that
inactivating CeL during acquisition has no effect, inhibit-
ing CeL during acquisition has been shown to impair fear
learning (Ciocchi et al., 2010). This is due to spurious
CeL learning during simulated extinction that should be
addressed in future versions of the model. Finally,

inhibiting CeM impairs fear expression but does not
affect acquisition (Ciocchi et al., 2010); our model cor-
rectly predicts these results.

4.6 | Fear generalization

To investigate fear generalization, we trained our model
by presenting 10 pairs of CS+-US and 10 unpaired CS�

(order randomized), then presented a series of novel
stimuli (CS∗). Recall that we represent CS inputs using
high-dimensional vectors that encode complex sensory
information; to generate CS� and CS∗, we simply created
more vectors using our original sampling procedure. The
similarity between these vectors and CS+ was calculated
using cosine similarity. Figure 7 (right panel) shows how
the model’s defensive responses changes as a function
of this similarity: Our model predicts that defensive
responses decrease as CS∗ becomes more dissimilar to
CS+ and that this fear ‘gradient’ appears to follow a
sigmoid curve.

We also investigated the hypothesis that fear gradi-
ents depend on pattern separation in AMY, sensory
cortex and/or hippocampus. According to this theory
(Dunsmoor & Paz, 2015; Lissek et al., 2014), the overge-
neralized fear responses observed in anxiety disorders
occur when neurons in these areas are insufficiently
selective for the CS+ (i.e., they continue firing even
when presented with dissimilar stimuli). To test the idea
that poor pattern separation causes broader defensive
responses to novel CS∗, we modified the tuning proper-
ties of our neurons and repeated the above experiment.

F I GURE 7 Left: Empirical data on fear generalization. In Lissek et al. (2014), the authors paired the presentation of a large circle (CS+)

with a mild electric shock and paired the presentation of a small circle (CS�) with no shock. They then presented circles of intermediary

sizes (CS1–CS4) and measured participant defensive responses using a self-reported risk rating (or startle EMG, not shown). They performed

this experiment in both healthy controls (n¼ 26) and patients with generalized anxiety disorder (GAD, n¼ 22). They found that

generalization gradients were more gradual in GAD patients. Sigmoids were fit to the data using Scipy’s curve_fit function (Virtanen et al.,

2020). Right: Simulated fear across 10 unique model instances. To manipulate the degree of pattern separation in our model, we adjusted the

tuning curves in EXTcs to make neurons more (or less) sensitive to a broad range of input stimuli. We found that models with stronger

pattern separation exhibited sharper fear generalization gradients, while networks with weaker pattern separation exhibited more gradual

gradients. This trend is consistent with empirically observed differences between healthy humans and individuals with anxiety disorders.

Shaded regions indicate 95% bootstrapped confidence intervals.
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In our model, external stimuli are first represented in
EXTcs and EXTctx, which correspond to sensory cortex
and hippocampus. When initializing these populations,
we use encoders that evenly tile the input space, ensuring
that all possible stimuli engage a subset of neurons. We
also specify the sparsity of neural representation in EXTcs

by setting αi and βi, which effectively determines how
similar a CS input must be to the encoder ei before the
neuron begins firing. By varying the sparsity of neurons
in EXTcs, we can thus control the degree of pattern sepa-
ration in our model. We predicted that sparse networks
would exhibit narrow fear gradients, while broadly tuned
networks would exhibit extended fear gradients.

Figure 7 shows generalization gradients for two
sparsity values. For each sparsity, we trained 10 unique
model instances and tested each with a set of
20 CS∗s. We observed that models with sparser neural
representations (stronger pattern separation) displayed
sharper generalization gradients. In sparse networks,
defensive responses declined rapidly as soon as CS∗

became distinguishable from CS+. In contrast, in net-
works with weak pattern separation, defensive responses
remained high for CS∗s that were similar to CS+ and only
declined as CS∗ began to resemble CS�.

Several empirical experiments have characterized
how fear responses to CS∗ decreases with similarity to
CS+. Figure 7 (left panel) reproduces the data from an
influential experiment, which studied fear generalization
in both healthy control subjects and participants with
generalized anxiety disorder (GAD) (Lissek et al., 2014).
The authors found that the fear experienced by control
subjects, operationalized using either a self-reported risk
rating or startle EMG, declined sharply as similarity to
CS+ decreased, but that the gradient for GAD subjects
was more gradual. In healthy controls, fear declined rap-
idly between CS+ and CS2 then plateaued for CS1 and
CS�. In contrast, in GAD participants, fear remained
high between CS+ and CS4, then declined gradually until
CS�. Similar gradients are apparent in patients with
panic disorders (Lissek et al., 2010) and PTSD (Lissek &
van Meurs, 2015). These results are consistent with our
predictions, and with the hypothesis that GAD patients
overgeneralize learned fear responses, reacting strongly
when CS∗ shares even a few features with the CS+ (Duits
et al., 2015).

Another feature of the empirical data is that anxious
individuals appear to have a heightened fear response to
CS�.3 However, our model predicts that the defensive

response to CS� should be similar in networks with
strong versus weak pattern separation (not shown). To
account for this difference, we hypothesized that anxious
individuals also learn stronger associations between CTX
and US, leading to higher baseline defensive responses
when testing in the acquisition context. We tested this
idea by strengthening the connections between BLA and
CeM in our model, causing contextual fear learning to
have a greater affect on the overall defensive response.
When we repeated the generalization experiment, we
observed stronger defensive responses for all CS, as
shown in Figure 7 (right panel, orange line). This result
supports the idea that the shape of the generalization gra-
dient (slope and inflection point) is determined by pat-
tern separation in AMY and hippocampus but that
baseline levels of fear following acquisition (y intercept)
depends on intrinsic connectivity within AMY.

To confirm our characterization of fear generalization
and to demonstrate the scalability of our model to more
complex stimuli, we repeated this generalization experi-
ment for multiple values of the CS dimensionality (D)
and network sparsity. In order to visualize the entire gen-
eralization gradient, we trained the model with a CS�

that was maximally dissimilar to CS+, then tested
100 CS∗s with intermediate similarities. Figure 8 shows
that generalization gradients appear sigmoidal regardless
of stimulus complexity and that weakening pattern sepa-
ration in the model consistently shifts this sigmoidal gra-
dient to the left. Unfortunately, the empirical data on
fear generalization are too sparse to robustly validate our
findings: The current data all use the same experimental
paradigm, do not report error bars in the plots and use
only simple stimuli.

Drawing on the insights gained from the simulated
experiments in Figures 7 and 8, we conclude with three
predictions for future experiments on fear generalization.
First, we predict that the relationship between defensive
response and stimulus similarity will be well character-
ized by a sigmoid curve. Second, we predict that the gen-
eralization curves of anxious individuals will be shifted
left (with centres towards more dissimilar stimuli) rela-
tive to healthy individuals. And third, we predict that
experiments that use simpler stimuli (those that include
few discernible features) will produce more extreme dif-
ferences between healthy and anxious individuals (larger
shifts to the left).

5 | DISCUSSION

In this paper, we presented a spiking neuron model of
the AMY, subjected it to several fear conditioning
protocols and compared its predictions to neural and

3Note that the empirical data from Lissek et al. (2014) does not include
a measure of variance, so we should be cautious when drawing
quantitative conclusions about generalization gradients in anxious
versus healthy humans.
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behavioural data from the empirical literature. Our
hypothesis was that fear conditioning and extinction
result from error-driven learning of the synaptic weights
between specific AMY nuclei. In this section, we discuss
the various assumptions made by our AMY model,
review the predictions we made with regards to existing
data and future experiments, compare our model to other
computational models of learning in AMY and identify
meaningful ways to extend the model in future work.

5.1 | Functional capacity

Our model boasts three key functional features. First, our
model clearly specifies the functional roles of numerous
populations and connections within AMY; that is, it
explains how fear learning emerges from specific neural
representations and computations within AMY. This
functional capacity was realized using the NEF: Drawing
on previous theoretical accounts of learning within AMY
(Carrere & Alexandre, 2015; Duvarci & Pare, 2014;
Mirolli et al., 2010), we created a model in which each
nucleus plays a particular role within a larger AMY
learning system (Section 2.2 and 2.3). Our model thus
helps translate the high-level ideas put forward by previ-
ous theorists into a quantitative model that makes falsifi-
able predictions.

Second, our model includes only as many biological
features and computational mechanisms as is required
explain the neural and behavioural results that we exam-
ine. This constraint relates to a fundamental trade-off
faced by all computational models of the brain: Should
they include as many biological features as possible, in
order to better resemble the organization of the brain? Or
should they seek to explain how a particular cognitive

ability arises from a particular set of biological features?
Our model takes a middle-of-the-road approach: We do
not include extra biological features for complexity’s sake
(each biological feature in our model has a functional
purpose), but we identify a diverse set of cognitive abili-
ties and neural results that we wish to reproduce. We
found that in order to explain all these cognitive abilities
and neural patterns within a single model, we had to
include a wide set of interacting biological features. We
thus consider our model (a) functional, in the sense that
it requires all of the simulated components to produce
the desired results, and (b) biologically plausible, in the
sense that it leverages many known biological features.
In Sections 5.2 and 5.3, we discuss in detail the biological
features that were included versus excluded in the model
and how they extend the functionality of previous neural
models.

Third, our model simulates high-dimensional repre-
sentations and makes novel predictions about fear gener-
alization. In order to simulate complex external inputs
and explain how AMY represents and transforms this
information, we used a two-fold approach. First, our
model represents CS and CTX as higher dimensional vec-
tors that drive spiking activity in our neural populations,
effectively encoding multiple features of the external
world. Second, we use an online, spike-based, error-
driven learning rule (PES) to realize associative learning
in these high-dimensional spaces. The conjunction of
high-dimensional representations and error-driven learn-
ing gives our model several unique functional properties.
Most importantly, PES leverages knowledge about the
representations of model neurons to update synaptic
weights based on their contribution to the current
error. This preserves information about the features
of high-dimensional inputs as they are collapsed into

F I GURE 8 Simulated fear generalization as a function of stimulus complexity and network sparsity. As the dimensionality D of the

input stimulus increases, fear gradients maintain their sigmoid shape, regardless of the degree of pattern separation in the model. The

gradients of networks with weaker pattern separation are also consistently shifted to the left. However, differences between the observed

gradients in networks with strong versus weak pattern separation are most obvious for low-complexity stimuli (D¼ 3) and are less apparent

for high-complexity stimuli (D¼ 11).
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low-dimensional ‘salience’ representations in LA and
BLA. One consequence is that these salience responses
generalize to similar inputs: As CS and CTX change,
salience responses change proportionally, leading to a
smooth generalization gradient. Furthermore, PES natu-
rally produces several classes of neural responses
observed in LA and BLA: Although all pyramidal neu-
rons in LA and BLA receive the same stimulus informa-
tion, their CS responses naturally diverge as a result of
learning.

These three functional features produce simulated
behaviour that both reproduces known behavioural
results in the fear conditioning literature and makes
novel predictions for future experiments. During acquisi-
tion, we placed the model in CTX+ and presented paired
CS and US: The model learned that CS and CTX+ pre-
dicted the onset of the US and produced the defensive
response to CS or CTX+ when these stimuli were pre-
sented without the US. During extinction, we presented
the CS without the US in a new CTX�: The model
learned that CTX� was associated with safety from the
US and suppressed its CS-induced defensive response
when tested in CTX�. However, when the model was
returned to CTX+, or placed in a novel CTX∗, it exhibited
fear renewal, confirming that extinction-induced fear
suppression is context specific. The model’s degree of
defensive response in CTX+, CTX� and CTX∗ is consis-
tent with animal experiments (Hermans et al., 2006;
Vansteenwegen et al., 2006): Responses in the extinction
context are suppressed, responses in the acquisition con-
text remain high and responses in novel contexts are
intermediate. We also showed that the model learned to
suppress its defensive response when acquisition and
extinction took place in the same context, albeit at a
slower rate.

Our model generalized fear associations to similar
stimuli and contexts. After showing that the model pro-
duced a defensive response to one particular input vector
(CS+), we investigated how this association generalized
to similar vectors in the input space (CS∗). We found that
when neural representations were sufficiently sparse
(i.e., realized strong pattern separation), our simulated
gradients agreed with empirical gradients (Dunsmoor
et al., 2009; Lissek et al., 2008): Both simulated and
empirical defensive responses declined rapidly as similar-
ity between the CS∗ and CS+ decreased. This result is
consistent with generalization gradients across animal
groups, behavioural contexts, sensory modalities and
learning styles (Ghirlanda & Enquist, 2003). Interest-
ingly, we found that when we decreased the sparsity of
neural representations (i.e., realized weak pattern separa-
tion), simulated defensive responses declined more grad-
ually, remaining high until CS∗ began to resemble CS�.

These results resemble the gradients observed in patients
with fear-related disorders, including generalized anxiety
disorders, post-traumatic stress disorder and panic disor-
ders (Duits et al., 2015; Dunsmoor & Paz, 2015; Lissek
et al., 2014, 2010, Lissek & van Meurs 2015). Our compu-
tational model thus provides novel theoretical support for
the idea that anxiety disorders are mediated by weaker
pattern separation in areas such as MTL, hippocampus
and AMY and quantitatively predicts the shapes of these
curves in healthy versus anxious individuals.

Despite these successes, our model is not without its
functional limitations. In this paper, we simulated input
signals (CS, US and CTX) that contained multiple fea-
tures but did not include temporal complexity. Our learn-
ing rule requires that CS and US be coincident for
association to occur. However, in many fear conditioning
protocols, the CS consists of a temporal sequence of sen-
sory cues (such as a train of audio cues at a certain fre-
quency), and the US often follows the offset of the
CS. Fortunately, our modelling framework can accom-
modate these more realistic stimuli. Previous work, both
empirical (Hall et al., 2002; Jones et al., 2007; Kumar
et al., 2014) and theoretical (Bendor, 2015; Krishnan
et al., 2014), suggests that cortex and hippocampus clas-
sify temporal sequences into coherent representations
that can be manipulated by other neural systems. Because
our model already operates over high-dimensional repre-
sentation, we can simulate neural networks that process
temporal sequences of sensory information, bundle this
temporal history into a single vector, then send this vec-
tor into the current AMY model. Previous NEF models
have demonstrated the feasibility of this approach
(Dumont et al., 2023). As for capturing delays between
CS offset and US onset, we need only add a short-term
memory into the model, either outside AMY (working
memory buffers in cortex) or within the respective AMY
nuclei. Again, previous NEF models have used biologi-
cally plausible neural integrators to build working memo-
ries for high-dimensional representations (Duggins &
Eliasmith, 2022) and shown that they can be used in
large-scale neural networks to perform cognitive tasks
(Eliasmith, 2013). Overall, our model should naturally
scale to inputs with greater temporal complexity.

A more challenging issue for our model is the consoli-
dation of fear memories. A wide range of neural and
behavioural data suggest that, in the hours and days fol-
lowing acquisition and/or extinction, processes occur that
solidify learned associations (McGaugh, 2000). Accounts
about the synaptic processes underlying consolidation
differ widely, from gene regulation (Ressler et al., 2002)
to GABAergic neurotransmission (Makkar et al., 2010) to
oscillatory synchrony (Totty et al., 2017) to interneuron
plasticity (Lucas & Clem, 2018). These processes seem to
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involve the coordination of multiple brain areas like
AMY, hippocampus and cortex (Chaaya et al., 2018; Feng
et al., 2014; Marek et al., 2013) over an extended period
of time (Igaz et al., 2002; Pace-Schott et al., 2015). The
behavioural consequences of consolidation are also com-
plex: Reversal of the CS-US association may be possible
before consolidation (Myers et al., 2006; Schiller et al.,
2008)); and effects such as reinstatement and spontane-
ous recovery may depend on the consolidation of
extinction memories. Given the neural complexity of con-
solidation, its reliance on the coordinated interaction of
other brain areas with AMY, and its poorly understood
behavioural signatures, we have chosen not to investigate
consolidation in the current work. As a result, our model
does not offer explanations for many consolidation-
related phenomena: For instance, it does not exhibit fear
reinstatement or recovery. However, future work could
extend our model to investigate the neural mechanisms
of fear consolidation. Currently, our model uses interneu-
ron populations in LA and BLA to control the rate and
timing of fear acquisition and extinction. Externally mod-
ulating these neurons, for instance, via consolidated asso-
ciations in hippocampus, may result in some of the
neural and behavioural signatures of consolidation.
Alternately, synaptic plasticity on interneurons them-
selves may drive consolidation: An expanded version of
our model could investigate the effects of learning in
these populations, in addition to pyramidal neurons.
Unfortunately, given the theoretical and biological com-
plexities of such an undertaking (see below), these inves-
tigations are beyond the scope of the current work.

5.2 | Biological plausibility

As mentioned above, our model includes only those bio-
logical features that were necessary to explain several
well-known results in fear conditioning. Nevertheless, we
argue that the model is biologically plausible, because it
(a) includes numerous biological features that are not
typically investigated in computational models focused
on fear behaviour, (b) quantitatively explains how these
features contribute to fear learning and (c) predicts sev-
eral biological results that are outside the scope of exist-
ing neural models. In this section, we review the
biological features we have included in the model, dis-
cuss our biological predictions and indicate additional
features that should be incorporated into the model in
future work.

We focus on fear learning within AMY: While many
brain structures contribute to fear conditioning, contex-
tual extinction and memory consolidation (Luchkina &
Bolshakov, 2019), AMY is a key structure in this process.

Recent meta-analyses have shown that AMY is one of, if
not the, most commonly referenced area in fMRI studies
of fear conditioning (Sehlmeyer et al., 2009), and review
studies have widely implicated the AMY within larger
brain networks for fear conditioning, including prefrontal
cortex, hippocampus, IL and PL (Milad & Quirk, 2012).
Thus, while AMY is not the sole driver of fear learning in
the brain, and while a model of AMY alone cannot
explain all fear-related phenomenon, developing models
of learning within AMY is indispensable for an under-
standing of fear learning throughout the brain. Further-
more, the insights we gain regarding representations,
computations and learning rules within AMY may be
applicable to other brain areas implicated in fear learn-
ing. Nonetheless, we acknowledge that numerous other
areas contribute to animal fear responses and that under-
standing fear behaviour in complex animals (especially
humans) requires a whole-brain perspective.

Our model simulates two brain areas outside AMY
and four nuclei within AMY. Because our focus is on
learning within AMY, we do not devote great attention to
specifying the biological properties or processes of these
two external populations: We simply say that these popu-
lations represent information related to context and sen-
sory inputs and that they connect to particular nuclei
within AMY (see Section 2.2). With regards to the AMY
itself, our model simulates the LA, BLA, CeL and CeM.
Within each nucleus, we simulated independent popula-
tions of excitatory pyramidal neurons and inhibitory
interneurons that communicate via spikes and are
connected in an anatomically-plausible manner. The
existence and connectivity of pyramidal neurons and
interneurons within each nucleus is well established,
and our model of their functional connectivity (Figure 1)
is derived from Duvarci and Pare (2014). Our model also
simulates several neural populations that explicitly
encode error signals; while several studies have found
evidence of error signals encoded in AMY activity (Li &
McNally, 2014; McHugh et al., 2014), error neurons in
AMY have not yet been clearly identified, and their exis-
tence constitutes a prediction made by our model.

The inclusion of these biological features permits our
model to make several novel biological predictions. First,
our model produces neurons whose activities change in
response to the CS and CTX following acquisition and
extinction, including fear, extinction and persistent neu-
rons in BLA. These response profiles emerge naturally as
a result of learning: Their existence is not guaranteed by
the structure of the model. However, despite the fact that
external CS (CTX) inputs are sent to all neurons in LA
(BLA) via synaptic connections from EXTcs (EXTctx), only
a fraction of our simulated neurons develop these
response properties. We used our model to predict the
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relative frequency of these neurons within each nucleus
and found that our estimates were broadly consistent
with measurements made in empirical experiments
(Bocchio et al., 2017; Herry et al., 2008; Ressler &
Maren, 2019). Unfortunately, quantitative validation of
these figures is difficult in practice: Empirical studies
often fail to report the criteria they use to classify neurons
and rarely take single-unit recordings (of the same neu-
ron across baseline, training and testing) for many
neurons within a given population. Better electrophysio-
logical data are needed to rigorously validate our predic-
tions regarding the abundance of fear, extinction and
persistent neurons.

The biological substrate of our model also allows
‘ablation studies’, in which we artificially inhibit a single
AMY nucleus during acquisition, extinction or expres-
sion, then predict the subsequent effects on neural activi-
ties and fear behaviour. We found that, in almost all
cases, our simulated perturbations produced behavioural
effects that aligned with empirical experiments, in which
chemicals like muscimol, or neurotransmitters like oxyto-
cin, were used to inhibit neurons within specific nuclei
(Ciocchi et al., 2010; Krabbe et al., 2018; Muller et al.,
1997; Saha et al., 2017; Sierra-Mercado et al., 2011). These
results support our theoretical account of how biology
and anatomy relate to function and hint at the possibility
of investigating neuromodulation in future work. For
simulated experiments where validation data could not
be found, we made predictions about the effects of inhi-
biting AMY populations that can be tested in future
empirical work.

Future work can extend the biological realism of our
model in several directions. We simulate spiking leaky-
integrate-and-fire (LIF) neurons; while these neurons
provide a better correspondence to biology than mean-
field approximations or static nonlinear neurons, they do
not exhibit transient bursting (Pendyam et al., 2013),
habituation or expectation (Moses et al., 2007). We also
do not simulate any physiological differences between
pyramidal neurons and inhibitory interneurons: Both are
instances of the same LIF model class, use synapses with
identical time constants and do not enforce Dale’s princi-
ple. While such biological abstractions are commonplace
in functional AMY models (Carrere & Alexandre, 2015;
John et al., 2016; Mannella et al., 2008; Vlachos et al.,
2011), we plan to apply recently developed NEF tools
(Duggins & Eliasmith, 2022; Stöckel, 2022) to simulate
more complex biophysical mechanisms in future work.

Another avenue for model extension relates to the
role of inhibitory interneurons, which are known to play
an important role in fear learning (Lucas & Clem, 2018;
Krabbe et al., 2018). Inhibitory neurons may (a) provide a
‘brake’ that prevents runaway excitation in pyramidal

neurons and controls the magnitude of learning, (b) be a
site of synaptic plasticity that contributes to fear or
extinction memories, (c) facilitate consolidation of extinc-
tion memories during experience replay or (d) encourage
pattern separation within AMY nuclei. In our model,
interneurons inhibit pyramidal neurons and control
learning at pyramidal synapses but do not undergo plas-
ticity themselves. While some other computational
models include interneuron populations (Li, 2017; Mat-
tera et al., 2020), these models tend to focus on how ana-
tomical connectivity produces empirically observed
patterns of neural activity and do not explore how this
connectivity drives learning and behaviour. We are
unaware of any computational models that mechanisti-
cally explain how inhibitory neurons accomplish (b–d);
specifying and modelling the functional role of interneu-
rons is therefore an important topic for future research
but requires significant theoretical development that is
outside the current scope.

Finally, it is important that future work connect AMY
to other brain structures that are implicated in fear learn-
ing. For instance, reciprocal connections between AMY
and MTL, hippocampus, IL and PL appear to be impor-
tant for contextual representation and memory consolida-
tion (Milad & Quirk, 2012; Quirk & Mueller, 2008),
especially with regards to network oscillations in particu-
lar frequency bands (Bocchio et al., 2017; Vlachos et al.,
2011). While recurrent connections between AMY, IL
and PL have been featured in some low-level models
(Mattera et al., 2020; Pendyam et al., 2013), we found that
such connections were not necessary to produce fear
acquisition, extinction or generalization in our model.
However, future work that investigates memory consoli-
dation from AMY to hippocampus and cortex should
model the functional roles of the connections between
these areas. Such work is eminently possible using the
tools we presented in this paper: Recent NEF models
have used hippocampal representations and network
oscillations to perform navigation tasks guided by contex-
tual cues (Dumont et al., 2023, 2022; Stöckel, 2022). It
would be interesting to integrate these mechanisms into
our model, with the goal of connecting complex contex-
tual representation in MTL with associative learning in
AMY. Lastly, various lines of research point to the role of
the BNST in controlling fear expression (Bauer, 2015),
conditioning to long-duration stimuli that are associated
with anxiety (Waddell et al., 2006) and mediating fear
generalization (Duvarci et al., 2009). Unfortunately, theo-
retical and computational accounts of how BNST inter-
acts with AMY to facilitate fear conditioning are
underdeveloped (Poulos et al., 2010; Sullivan et al., 2004),
so it is unclear how future work should integrate this
structure into the model presented here.
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5.3 | Comparison with other
computational models

Our model extends previous computational models of
AMY fear conditioning in several respects. First, our
model simulates numerous biological features that are
ignored in simple models of fear learning. Unlike models
that investigate the interaction of a few idealized neural
populations (Carrere & Alexandre, 2015; Mannella et al.,
2008; Moustafa et al., 2013; Vlachos et al., 2011), we sim-
ulate (a) multiple nuclei whose internal and external con-
nectivity is anatomically constrained, (b) dedicated
populations of inhibitory neurons that functionally con-
trol the dynamics of fear conditioning and (c) spiking LIF
neurons instead of rate neurons whose firing rates are
given by mean-field approximations or static nonlinear-
ities. Despite these added biological features, our model
successfully predicts many of the same behavioural phe-
nomenon in fear learning as do the simpler models,
including the extent of fear expression following acquisi-
tion, extinction and renewal. Furthermore, the scalable
nature of our model permits an investigation of fear gen-
eralization to novel stimuli and allows us to make novel
predictions about the gradient of defensive responses in
both healthy and anxious individuals. These experiments
cannot be conducted using existing computational
models, for reasons discussed below.

On the other hand, our model does not include the
level of anatomical detail used in some models (Mattera
et al., 2020), nor does it simulate the detailed cellular
mechanisms that are central to other models (Kim et al.,
2013; Li et al., 2009; Pendyam et al., 2013). While these
models make important contributions to our understand-
ing of AMY electrophysiology and synaptic potentiation,
we emphasize that our model was designed to investigate
a different set of questions and to make predictions at a
higher level of analysis, than were these models. As such,
these models are better suited to the investigation of, for
example, how reciprocal connections with IL and PL sus-
tain neural activities within BLA, whereas our model is
better suited to the investigation of, for example, how
behavioural defensive responses depend on shared fea-
tures between the stimuli and contexts present during
training versus testing. Still, we argue that our model
makes important contributions to a low-level under-
standing of fear learning and helps connect questions
about biological features to questions about cognition
and behaviour. For example, our model (a) explains why
only a fraction of neurons in LA and BLA become sensi-
tive to CS and CTX following acquisition and extinction
and (b) demonstrates the behavioural effects of externally
inactivating various nuclei during a fear conditioning
protocol.

The second way that we extend previous models of
fear conditioning is by using sophisticated representa-
tions for fear stimuli and environmental contexts. Many
AMY models simulate inputs by injecting an external
current into model neurons (Kim et al., 2013; Li et al.,
2009; Mattera et al., 2020; Pendyam et al., 2013; Vlachos
et al., 2011); such inputs can only convey whether a
stimulus is present or absent. Other models use ‘one-hot’
vectors to represent sensory inputs (Carrere &
Alexandre, 2015; John et al., 2016; Mannella et al., 2008;
Moustafa et al., 2013); unfortunately, these representa-
tions do not permit graded comparison between different
CS or CTX, because all possible inputs to the network are
maximally dissimilar. Our model represents CS and CTX
as higher dimensional vectors that drive spiking activity
in our neural populations, effectively encoding multiple
features of the external world. We also use PES, an
online, spike-based, error-driven learning rule, to realize
associative learning. While Hebbian rules are common-
place in both biophysical models (Li et al., 2009; Kim
et al., 2013; Pendyam et al., 2013) and conceptual models
(Mattera et al., 2020; Mannella et al., 2008; Moustafa
et al., 2013; Vlachos et al., 2011), they do not directly
account for the features that comprise complex stimuli.
On the other hand, PES learning facilitates feature-rich
associations and, unlike some other error-driven rules
used by AMY models (Carrere & Alexandre, 2015; John
et al., 2016), can feasibly be implemented in biological net-
works (Bekolay, 2011, 2013) and can be applied to many
cognitive domains (Eliasmith, 2013; Rasmussen, 2014;
Voelker, 2015). As mentioned above, PES naturally pro-
duces the neural responses observed in LA and BLA.
While some computational models boast the emergence of
such responses, many of these models organize neurons
with different response properties (e.g., neurons sensitive
to one CS but not another, sensitive to CS vs. US or des-
tined for fear vs. extinction) into distinct populations that
are connected in a carefully engineered manner
(e.g., receive different external inputs or are reciprocally
connected via an inhibitory microcircuit) (Carrere &
Alexandre, 2015; Mattera et al., 2020; Vlachos et al., 2011).
The CS-induced responses of these neurons follow directly
from this specific connectivity. In contrast, all pyramidal
neurons in our model receive the same stimulus informa-
tion and are fully connected to the appropriate interneu-
rons, but feature-driven PES learning causes their CS
responses to diverge during training.

Finally, while most computational models compare
their results to only a single class of empirical data, we
validate our model predictions using both neural and
behavioural data. Models that learn fear and safety asso-
ciation between stimuli often show that learning changes
the CS responsiveness of individual neurons (Kim et al.,
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2013; Li et al., 2009; Mattera et al., 2020; Moustafa et al.,
2013; Pendyam et al., 2013; Vlachos et al., 2011). Some
models decode neural activities to show a change in
behavioural defensive responses following training
(Carrere & Alexandre, 2015; Li et al., 2009), while others
investigate the relationship between context and extinc-
tion (Carrere & Alexandre, 2015; Moustafa et al., 2013).
Yet another class of models (Moustafa et al., 2013; Pen-
dyam et al., 2013; Vlachos et al., 2011) externally inacti-
vate parts of the model and examine the effects on neural
activity or behavioural responses. We validate our model
against all these data types: We (a) identified neurons
whose CS-induced responses changed during our experi-
ments and compared their mean firing rates, (b) decoded
neural activities to estimate defensive responses and
showed how they differed in various training regimes
and test contexts, (c) externally perturbed each nucleus
and observed the effects on fear conditioning and
(d) presented the model with novel stimuli and studied
gradients of fear generalization in healthy and anxious
individuals. In all these cases, we used the model to make
falsifiable predictions, then we provided citations for
empirical studies that support (or contradict) our results.
Notably, ours is perhaps the first neural model to charac-
terize fear generalization as an emergent property of fear
conditioning over complex stimuli and makes quantita-
tive predictions about fear gradients that can be tested in
future empirical experiments.

6 | CONCLUSION

In this paper, we presented a computational model of
fear conditioning, extinction, renewal and generalization
in the AMY. We hypothesized that each nucleus in AMY
represents specific fear-related quantities and that, when
trained using an error signal, the connections between
them compute the salience of external stimuli and con-
texts. Our model recreates AMY neuroanatomy, notably
the divisions between its nuclei and the response proper-
ties of its pyramidal and inhibitory neurons. We trained
the model using online, spike-based, error-driven learn-
ing rules that update synaptic connection weights in LA,
CeL and BLA, generating or suppressing defensive
responses as appropriate. We ran numerous experiments
on the model, made a series of neural and behavioural
predictions and validated our results with empirical data.
Specifically, we identified neurons with different emer-
gent response profiles, measured fear expression in vari-
ous training protocols and test contexts, performed
ablation studies, characterized how fear generalizes to
novel stimuli and showed that neural pattern separation

can explain differences in defensive responses between
healthy and anxious individuals. We concluded by sum-
marizing the biological and functional properties of the
model and by comparing it with other computational
models of AMY.

Future work should expand the functional capacities,
biological realism and cognitive integration of our model.
Functionally, we would like to explain additional fear-
related behaviours including secondary conditioning,
spontaneous recovery, reinstatement and rapid reacquisi-
tion. Biologically, we could replace our LIF neurons
with biophysically detailed neuron models (Duggins &
Eliasmith, 2022), then more realistically simulate the
injection of pharmacological agents or study neuromodu-
lation of AMY by dopamine, norephinerphine or oxyto-
cin. We could also recreate inhibitory microcircuits with
greater fidelity or explore alternative learning rules (Borst
et al., 2018), in order to study the role of interneurons in
pattern separation and memory consolidation. Cogni-
tively, we hope to embed our model in larger cognitive
networks, study the process of fear memory consolidation
in hippocampus and cortex and investigate more complex
cognitive tasks. In particular, expanding our model to
study the relationship between fear association, salience
detection, attention and emotional modulation could
help clarify how AMY contributes to affective cognition
throughout the brain.
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